其實我寫的有點懼怕,由於我不知道我作的對不對,電腦的GPU不行,只跑出了兩個epoch的結果就跑不動了,我也不知道是否是程序真的有問題,嗯,我就是一個傻狗屌絲女。先將inception_v3原來的模型放進來用來獲取logits。python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from VGG16 import inception_utils slim = tf.contrib.slim trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) def inception_v3_base(inputs, final_endpoint='Mixed_7c', min_depth=16, depth_multiplier=1.0, scope=None): end_points = {} if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with tf.variable_scope(scope, 'InceptionV3', [inputs]): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='VALID'): # 299 x 299 x 3 end_point = 'Conv2d_1a_3x3' net = slim.conv2d(inputs, depth(32), [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 149 x 149 x 32 end_point = 'Conv2d_2a_3x3' net = slim.conv2d(net, depth(32), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 147 x 147 x 32 end_point = 'Conv2d_2b_3x3' net = slim.conv2d(net, depth(64), [3, 3], padding='SAME', scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 147 x 147 x 64 end_point = 'MaxPool_3a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 73 x 73 x 64 end_point = 'Conv2d_3b_1x1' net = slim.conv2d(net, depth(80), [1, 1], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 73 x 73 x 80. end_point = 'Conv2d_4a_3x3' net = slim.conv2d(net, depth(192), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 71 x 71 x 192. end_point = 'MaxPool_5a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 35 x 35 x 192. # Inception blocks with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # mixed: 35 x 35 x 256. end_point = 'Mixed_5b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(64), [5, 5], scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(32), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_1: 35 x 35 x 288. end_point = 'Mixed_5c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0b_1x1') branch_1 = slim.conv2d(branch_1, depth(64), [5, 5], scope='Conv_1_0c_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(64), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_2: 35 x 35 x 288. end_point = 'Mixed_5d' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(64), [5, 5], scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(64), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_3: 17 x 17 x 768. end_point = 'Mixed_6a' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(384), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, depth(96), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_1x1') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed4: 17 x 17 x 768. end_point = 'Mixed_6b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(128), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(128), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(128), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(128), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_5: 17 x 17 x 768. end_point = 'Mixed_6c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(160), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(160), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_6: 17 x 17 x 768. end_point = 'Mixed_6d' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(160), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(160), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_7: 17 x 17 x 768. end_point = 'Mixed_6e' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(192), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(192), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(192), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_8: 8 x 8 x 1280. end_point = 'Mixed_7a' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, depth(320), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(192), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, depth(192), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_9: 8 x 8 x 2048. end_point = 'Mixed_7b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0b_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d( branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'), slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_10: 8 x 8 x 2048. end_point = 'Mixed_7c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0c_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d( branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'), slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v3(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, min_depth=16, depth_multiplier=1.0, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, create_aux_logits=True, scope='InceptionV3', global_pool=False): if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with tf.variable_scope(scope, 'InceptionV3', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_v3_base( inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier) # Auxiliary Head logits if create_aux_logits and num_classes: with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): aux_logits = end_points['Mixed_6e'] with tf.variable_scope('AuxLogits'): aux_logits = slim.avg_pool2d( aux_logits, [5, 5], stride=3, padding='VALID', scope='AvgPool_1a_5x5') aux_logits = slim.conv2d(aux_logits, depth(128), [1, 1], scope='Conv2d_1b_1x1') # Shape of feature map before the final layer. kernel_size = _reduced_kernel_size_for_small_input( aux_logits, [5, 5]) aux_logits = slim.conv2d( aux_logits, depth(768), kernel_size, weights_initializer=trunc_normal(0.01), padding='VALID', scope='Conv2d_2a_{}x{}'.format(*kernel_size)) aux_logits = slim.conv2d( aux_logits, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, weights_initializer=trunc_normal(0.001), scope='Conv2d_2b_1x1') if spatial_squeeze: aux_logits = tf.squeeze(aux_logits, [1, 2], name='SpatialSqueeze') end_points['AuxLogits'] = aux_logits # Final pooling and prediction with tf.variable_scope('Logits'): if global_pool: # Global average pooling. net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='GlobalPool') end_points['global_pool'] = net else: # Pooling with a fixed kernel size. kernel_size = _reduced_kernel_size_for_small_input(net, [8, 8]) net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a_{}x{}'.format(*kernel_size)) end_points['AvgPool_1a'] = net if not num_classes: return net, end_points # 1 x 1 x 2048 net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b') end_points['PreLogits'] = net # 2048 logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') # 1000 end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points inception_v3.default_image_size = 299 def _reduced_kernel_size_for_small_input(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are is large enough. Args: input_tensor: input tensor of size [batch_size, height, width, channels]. kernel_size: desired kernel size of length 2: [kernel_height, kernel_width] Returns: a tensor with the kernel size. TODO(jrru): Make this function work with unknown shapes. Theoretically, this can be done with the code below. Problems are two-fold: (1) If the shape was known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot handle tensors that define the kernel size. shape = tf.shape(input_tensor) return = tf.stack([tf.minimum(shape[1], kernel_size[0]), tf.minimum(shape[2], kernel_size[1])]) """ shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size_out = kernel_size else: kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])] return kernel_size_out inception_v3_arg_scope = inception_utils.inception_arg_scope
inception_utils的代碼在下面,它是對slim定義卷積和池化的一些參數作默認的規定,這樣不須要每次都進行相同的規定git
#!/usr/bin/env python # -*- coding:utf-8 -*- #@Time : 2019/9/17 10:12 #@Author: zhangtao #@File : inception_utils.py # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains common code shared by all inception models. Usage of arg scope: with slim.arg_scope(inception_arg_scope()): logits, end_points = inception.inception_v3(images, num_classes, is_training=is_training) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim def inception_arg_scope(weight_decay=0.00004, use_batch_norm=True, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, activation_fn=tf.nn.relu, batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS): """Defines the default arg scope for inception models. Args: weight_decay: The weight decay to use for regularizing the model. use_batch_norm: "If `True`, batch_norm is applied after each convolution. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. activation_fn: Activation function for conv2d. batch_norm_updates_collections: Collection for the update ops for batch norm. Returns: An `arg_scope` to use for the inception models. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, # collection containing update_ops. 'updates_collections': batch_norm_updates_collections, # use fused batch norm if possible. 'fused': None, } if use_batch_norm: normalizer_fn = slim.batch_norm normalizer_params = batch_norm_params else: normalizer_fn = None normalizer_params = {} # Set weight_decay for weights in Conv and FC layers. with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope( [slim.conv2d], weights_initializer=slim.variance_scaling_initializer(), activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) as sc: return sc
而後就是使用logits對圖像進行訓練,其實我也不知道我作的對不對,若是電腦容許的夥伴就拿去試試吧express
from VGG16.DecodeRecord import * import VGG16.inception_v3 as inception_v3 from VGG16.CreateTfrecordsFile import * import tensorflow as tf from datetime import datetime import tensorflow.contrib.slim as slim shuffle_size=200 labels_num=5 batch_size=8 resize_height=299 resize_width=299 channels=3 data_shape=[batch_size,resize_height,resize_width,channels] training_steps=10000 train_record_file='D:/軟件/pycharmProject/wenyuPy/Dataset/VGG16/record/train.tfrecords' validation_record_file='D:/軟件/pycharmProject/wenyuPy/Dataset/VGG16/record/validation.tfrecords' #get the images_batch and labels_batch def get_batches(tfrecords_file): dataset=tf.data.TFRecordDataset(tfrecords_file) dataset=dataset.map(decode_example) dataset=dataset.shuffle(shuffle_size).batch(batch_size) iterator=tf.compat.v1.data.make_one_shot_iterator(dataset) images_batch,labels_batch=iterator.get_next() return images_batch,labels_batch def get_example_nums(tf_records_filenames): nums=0 for record in tf.python_io.tf_record_iterator(tf_records_filenames): nums+=1 return nums input_images=tf.compat.v1.placeholder(dtype=tf.float32,shape=[None,resize_height,resize_width,channels],name='input') input_labels=tf.compat.v1.placeholder(dtype=tf.int32,shape=[None,labels_num],name='label') keep_prob=tf.compat.v1.placeholder(tf.float32,name='keep_prob') is_training=tf.compat.v1.placeholder(tf.bool,name='is_training') def train(train_record_file, labels_num, ): #[base_lr,max_steps]=train_param #[batch_size,resize_height,resize_width,channels]=data_shape with slim.arg_scope(inception_v3.inception_v3_arg_scope()): out,end_points=inception_v3.inception_v3(inputs=input_images,num_classes=labels_num, dropout_keep_prob=keep_prob,is_training=is_training) #添加交叉熵損失 tf.losses.softmax_cross_entropy(onehot_labels=input_labels,logits=out) #添加正則化損失 loss=tf.compat.v1.losses.get_total_loss(add_regularization_losses=True) global_steps = tf.Variable(0, trainable=False) learning_rate=tf.compat.v1.train.exponential_decay(0.05,global_steps,150,0.9) optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=learning_rate) #optimizer = tf.train.GradientDescentOptimizer(learning_rate=base_lr) update_ops=tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op=optimizer.minimize(loss) #train_op = slim.learning.create_train_op(total_loss=loss, optimizer=optimizer) accuracy=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out,1),tf.argmax(input_labels,1)),tf.float32)) #saver=tf.train.Saver() init_op = tf.compat.v1.global_variables_initializer() train_record_nums=get_example_nums(train_record_file) #validation_record_nums=get_example_nums(validation_record_file) max_train_steps=int(train_record_nums/batch_size) epoches_nums=10*max_train_steps train_losses=[] train_acc=[] with tf.compat.v1.Session() as sess: sess.run(init_op) for i in range(epoches_nums): train_images, train_labels = get_batches(train_record_file) train_x,train_y=sess.run([train_images,train_labels]) _,train_loss=sess.run([train_op,loss],feed_dict={ input_images:train_x,input_labels:train_y, keep_prob:0.5,is_training:True }) #train_losses.append(train_loss) #train_acc.append(accuracy) if i%max_train_steps==0: train_acc=sess.run([accuracy],feed_dict={ input_images: train_x, input_labels: train_y, keep_prob: 1.0, is_training: False }) print(train_loss, train_acc) if __name__=='__main__': base_lr=0.01 train_log_step=100 train(train_record_file,labels_num)
好了,這就是個人學習過程了,真的以爲好難啊,也不知道作的對不對apache