在tf中,參與訓練的參數可用 tf.trainable_variables()提取出來,如:git
#取出全部參與訓練的參數 params=tf.trainable_variables() print("Trainable variables:------------------------") #循環列出參數 for idx, v in enumerate(params): print(" param {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))
這裏只能查看參數的shape和name,並無具體的值。若是要查看參數具體的值的話,必須先初始化,即:網絡
sess=tf.Session() sess.run(tf.global_variables_initializer())
同理,咱們也能夠提取圖片通過訓練後的值。圖片通過卷積後變成了特徵,要提取這些特徵,必須先把圖片feed進去。ide
具體看實例:orm
# -*- coding: utf-8 -*- """ Created on Sat Jun 3 12:07:59 2017 @author: Administrator """ import tensorflow as tf from skimage import io,transform import numpy as np #-----------------構建網絡---------------------- #佔位符 x=tf.placeholder(tf.float32,shape=[None,100,100,3],name='x') y_=tf.placeholder(tf.int32,shape=[None,],name='y_') #第一個卷積層(100——>50) conv1=tf.layers.conv2d( inputs=x, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool1=tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) #第二個卷積層(50->25) conv2=tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool2=tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) #第三個卷積層(25->12) conv3=tf.layers.conv2d( inputs=pool2, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool3=tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2) #第四個卷積層(12->6) conv4=tf.layers.conv2d( inputs=pool3, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool4=tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2) re1 = tf.reshape(pool4, [-1, 6 * 6 * 128]) #全鏈接層 dense1 = tf.layers.dense(inputs=re1, units=1024, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) logits= tf.layers.dense(inputs=dense2, units=5, activation=None, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) #---------------------------網絡結束--------------------------- #%% #取出全部參與訓練的參數 params=tf.trainable_variables() print("Trainable variables:------------------------") #循環列出參數 for idx, v in enumerate(params): print(" param {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name)) #%% #讀取圖片 img=io.imread('d:/cat.jpg') #resize成100*100 img=transform.resize(img,(100,100)) #三維變四維(100,100,3)-->(1,100,100,3) img=img[np.newaxis,:,:,:] img=np.asarray(img,np.float32) sess=tf.Session() sess.run(tf.global_variables_initializer()) #提取最後一個全鏈接層的參數 W和b W=sess.run(params[26]) b=sess.run(params[27]) #提取第二個全鏈接層的輸出值做爲特徵 fea=sess.run(dense2,feed_dict={x:img})
最後一條語句就是提取某層的數據輸出做爲特徵。圖片
注意:這個程序並無通過訓練,所以提取出的參數只是初始化的參數。utf-8