JavaShuo
欄目
標籤
Explainable Recommendation: A Survey and New Perspectives讀書筆記
時間 2020-12-30
原文
原文鏈接
推薦系統的研究問題可分成5W,可解釋性推薦主要是回答why這個問題。 - when time-aware recommendation - what application-aware recommendation - who social recommendation - where location-based recommendation - why explainable recommen
>>阅读原文<<
相關文章
1.
Deep Learning based Recommender System: A Survey and New Perspectives
2.
【論文閱讀筆記】Deep Learning based Recommender System: A Survey and New Perspectives
3.
翻譯(筆記):可解釋性推薦系統綜述Explainable Recommendation: A Survey and New Perspectives
4.
Deep Learning based Recommender System:A Survey and New Perspectives
5.
Deep Learning based Recommender System: A Survey and New Perspectives (2)
6.
Deep Learning based Recommender System: A Survey and New Perspectives (1)
7.
Deep Multimodal Learning A survey on recent advances and trends讀書筆記
8.
筆記:《Transparent, Scrutable and Explainable User Models for Personalized Recommendation》
9.
Tree-enhanced Embedding Model for Explainable Recommendation閱讀筆記
10.
Visual Place Recognition: A Survey閱讀筆記
更多相關文章...
•
Eclipse 添加書籤
-
Eclipse 教程
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
RxJava操作符(七)Conditional and Boolean
相關標籤/搜索
讀書筆記
recommendation
survey
explainable
perspectives
FSFA 讀書筆記
MySQL 讀書筆記
Nginx讀書筆記
閱讀筆記
NEW!
MyBatis教程
Redis教程
Thymeleaf 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
android 以太網和wifi共存
2.
沒那麼神祕,三分鐘學會人工智能
3.
k8s 如何 Failover?- 每天5分鐘玩轉 Docker 容器技術(127)
4.
安裝mysql時一直卡在starting the server這一位置,解決方案
5.
秋招總結指南之「性能調優」:MySQL+Tomcat+JVM,還怕面試官的轟炸?
6.
布隆過濾器瞭解
7.
深入lambda表達式,從入門到放棄
8.
中間件-Nginx從入門到放棄。
9.
BAT必備500道面試題:設計模式+開源框架+併發編程+微服務等免費領取!
10.
求職面試寶典:從面試官的角度,給你分享一些面試經驗
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Deep Learning based Recommender System: A Survey and New Perspectives
2.
【論文閱讀筆記】Deep Learning based Recommender System: A Survey and New Perspectives
3.
翻譯(筆記):可解釋性推薦系統綜述Explainable Recommendation: A Survey and New Perspectives
4.
Deep Learning based Recommender System:A Survey and New Perspectives
5.
Deep Learning based Recommender System: A Survey and New Perspectives (2)
6.
Deep Learning based Recommender System: A Survey and New Perspectives (1)
7.
Deep Multimodal Learning A survey on recent advances and trends讀書筆記
8.
筆記:《Transparent, Scrutable and Explainable User Models for Personalized Recommendation》
9.
Tree-enhanced Embedding Model for Explainable Recommendation閱讀筆記
10.
Visual Place Recognition: A Survey閱讀筆記
>>更多相關文章<<