吉布斯採樣和梅特羅波利斯-黑斯廷斯算法

吉布斯採樣 吉布斯採樣(英語:Gibbs sampling)是統計學中用於馬爾科夫蒙特卡洛(MCMC)的一種算法,用於在難以直接採樣時從某一多變量概率分佈中近似抽取樣本序列。該序列可用於近似聯合分佈、部分變量的邊緣分佈或計算積分(如某一變量的期望值)。某些變量可能爲已知變量,故對這些變量並不需要採樣。 吉布斯採樣常用於統計推斷(尤其是貝葉斯推斷)之中。這是一種隨機化算法,與最大期望算法等統計推斷中
相關文章
相關標籤/搜索