零個或多個元素的有限序列。或者 線性表是由n個元素組成的有限序列。算法
咱們都知道了線性表元素之間是有序的,一一對應的。下面是線性表的兩種實現。數組
物理儲存:用一段地址連續的存儲單元依次存儲線性表的數據元素。既然是連續內存,咱們就能夠想到數組。因此咱們能夠用數組來實現順序表。數據結構
重點注意:既然是用數組,咱們都知道數組字定義時,必須聲明數組的大小。因此這裏引出兩個概念。.net
數組長度: 咱們在定義結構體時的數組申明大小指針
順序表長度: 定義變量後,變量存放數據的多少。索引
由此能夠看出,順序表的長度必定小於等於數組長度。內存
線性表元素的序號和存放它的數組下標之間存在對應關係:因爲咱們數數都是從1開始數的,線性表的定義也不能避免,起始也是1,可C語言中的數組倒是從0開始的第一個下標,因而線性表的第i個元素是要存儲在數組下標爲i-1的位置。get
既然順序表有長度,是否是須要一個變量來記錄這個長度?it
這樣咱們的順序表的結構也就出來了。ast
struct list
{
int data[20]; //存放數據
/*--------------------------------------*/
Int len;; // 記錄順序表的長度
};
這裏要注意的是
/*------------*/前面:是能夠寫多個,任意類型的數據(通常多個數據用結構體來包裹起來,因此通常都是結構體類型)。
/*------------*/後面:的是記錄順序表的長度,也就是存儲元素的個數。
1.2.1順序表插入
咱們都知道順序表的存儲是用數組實現的。
因此咱們在插入的時候,須要數組元素日後移動。空一個位置來進行插入。
1. 從最後一個位置開始向前遍歷到第i個位置,也就是咱們須要插入的位置。分別將他們向後移動一位。這樣就會空出一個位置來。
2. 咱們在第i個位置來插入這個元素。
3. 不要忘記---->順序表長度加1
圖示:
圖 5-1 插入示意圖
在圖5-1中,紅色方框表示空出來的位置。咱們須要在4這個位置,插入
注意增長的元素就是咱們要刪除的元素。
代碼實現:
要注意數組下標和實際位置之間的關係。咱們的循環i控制的是數組的下標。
for(i = list.len; i >= x; i--)
{
list.data[i] = list.dat[i-1];
}
List.data[x-1] = ??;//這裏賦值,或者scanf輸入data若是是結構體,就給其成員變量分別來賦值。
List.len++;
1.2.2 順序表的刪除
在執行刪除操做時,咱們只需將數組從刪除的位置,向前移動就能夠了。
1. 從刪除的位置開始,向後遍歷,直到最後一個元素位置。分別將他們向前移動一個位置。
2. 不要忘記----->順序表長度減1
圖示:
圖 5-2 刪除示意圖
在圖5-2中紅色數字表示要刪除的數字。咱們把位置爲5的元素刪除。
注意刪除元素後,順序表的長度減1
代碼實現:
for(i = x-1; i < list.len; i++)
{
list.data[i] = list.dat[i+1];
}
List.len--;
物理存儲:鏈表是一種物理存儲單元上非連續、非順序的存儲結構,數據元素的邏輯順序是經過鏈表中的指針連接次序實現的。
鏈表由一系列結點(鏈表中每個元素稱爲結點)組成,結點能夠在運行時動態生成。每一個結點包括兩個部分:一個是存儲數據元素的數據域,另外一個是存儲下一個結點地址的指針域。
由此咱們能夠總結出來鏈表的結構體這也就是所謂的節點:
struct linklist
{
Int data;
struct linklist *next;
};
typedef struct linklist * linklist; // 這裏的linklist通常取名爲咱們實際鏈表的名稱這
在這裏咱們須要特別注意的是頭節點和頭指針之間的區別。固然還有最後一個節點的指針指向NULL。
頭指針:
//TODO
頭結點:
//TODO
1.2.1單鏈表的插入
圖 5 - 3 單鏈表的插入
如圖所示:要將S節點插入。此時我要注意的是不能將p 後面的元素丟失
代碼實現:
1. S -> next = P -> next; // 注意p後面的元素不能丟失,因此先讓P後的元素掛到s上去。2. P -> next = s; // 而後讓P和 s創建關係
1.2.2 單鏈表的刪除
圖 5 -4 單鏈表刪除
如圖所示:咱們要刪除的是p後的一個元素。咱們只要把p的next域指向他的下下個元素。
代碼實現:
p->next = p->next->next;
//TODO...
1.3.1 順序表特色:
優勢:
ü 存取速度高效,經過下標來直接存儲,隨機訪問的特色。
ü 方法簡單,各類高級語言中都有數組,容易實現。
ü 不用爲表示節點間的邏輯關係而增長額外的存儲開銷。
缺點:
1.3.2 單鏈表特色
長度不固定,能夠任意增刪。
存儲空間不連續,數據元素之間使用指針相連,每一個數據元素只能訪問周圍的一個元素(根據單鏈表仍是雙鏈表有所不一樣)。
存儲密度小,由於每一個數據元素,都須要額外存儲一個指向下一元素的指針(雙鏈表則須要兩個指針)。
要訪問特定元素,只能從鏈表頭開始,遍歷到該元素,時間複雜度爲 O(n)。
在特定的數據元素以後插入或刪除元素,不涉及到其餘元素的移動,所以時間複雜度爲 O(1)。雙鏈表還容許在特定的數據元素以前插入或刪除元素。
優勢:
ü 插入和刪除速度快,保留原有的物理順序,好比:插入或者刪除一個元素時,只須要改變指針指向便可
缺點:
3、順序表與鏈表的優缺點切好相反,那麼在實踐應用中怎樣選取存儲結構呢?一般有如下幾點考慮:
(1)順序表的存儲空間是靜態分配的,在程序執行以前必須明確規定它的存儲規模,也就是說事先對「MaxSize」要有合適的設定,設定過大會形成存儲空間的浪費,太小形成溢出。所以,當對線性表的長度或存儲規模難以估計時,不宜採用順序表。然而,鏈表的動態分配則能夠克服這個缺點。鏈表不須要預留存儲空間,也不須要知道表長如何變化,只要內存空間尚有空閒,就能夠再程序運行時隨時地動態分配空間,不須要時還能夠動態回收。所以,當線性表的長度變化較大或者難以估計其存儲規模時,宜採用動態鏈表做爲存儲結構。
但在鏈表中,除數據域外海須要在每一個節點上附加指針。若是節點的數據佔據的空間小,則鏈表的結構性開銷就佔去了整個存儲空間的大部分。當順序表被填滿時,則沒有結構開銷。在這種狀況下,順序表的空間效率更高。因爲設置指針域額外地開銷了必定的存儲空間,從存儲密度的角度來說,鏈表的存儲密度小於1.所以,當線性表的長度變化不大並且事先容易肯定其大小時,爲節省存儲空間,則採用順序表做爲存儲結構比較適宜。
(2)基於運算的考慮(時間)
順序存儲是一種隨機存取的結構,而鏈表則是一種順序存取結構,所以它們對各類操做有徹底不一樣的算法和時間複雜度。例如,要查找線性表中的第i個元素,對於順序表能夠直接計算出a(i)的的地址,不用去查找,其時間複雜度爲0(1).而鏈表必須從鏈表頭開始,依次向後查找,平均須要0(n)的時間。因此,若是常常作的運算是按序號訪問數據元素,顯然順表優於鏈表。
反之,在順序表中作插入,刪除時平均移動表中一半的元素,當數據元素的信息量較大並且表比較長時,這一點是不該忽視的;在鏈表中做插入、刪除,雖然要找插入位置,但操做是比較操做,從這個角度考慮顯而後者優於前者。
(3)基於環境的考慮(語言)
順序表容易實現,任何高級語言中都有數組類型;鏈表的操做是基於指針的。相對來說前者簡單些,也用戶考慮的一個因素。
結論:
總之,兩種存儲結構各有長短,選擇哪種由實際問題中的主要因素決定。一般「較穩定」的線性表,即主要操做是查找操做的線性表,適於選擇順序存儲;而頻繁作插入刪除運算的(即動態性比較強)的線性表適宜選擇鏈式存儲。