前言:譯者實測 PyTorch 代碼很是簡潔易懂,只須要將中文分詞的數據集預處理成做者提到的格式,便可很快的就遷移了這個代碼到中文分詞中,相關的代碼後續將會分享。html
具體的數據格式,這種方式並不適合處理不少的數據,可是對於 demo 來講很是友好,把英文改爲中文,標籤改爲分詞問題中的 「BEMS」 就能夠跑起來了。python
# Make up some training data training_data = [( "the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split() ), ( "georgia tech is a university in georgia".split(), "B I O O O O B".split() )]
Pytorch是一個動態神經網絡工具包。 動態工具包的另外一個例子是Dynet(我之因此提到這一點,由於與Pytorch和Dynet的工做方式相似。若是你在Dynet中看到一個例子,它可能會幫助你在Pytorch中實現它)。 相反的是靜態工具包,包括Theano,Keras,TensorFlow等。核心區別以下:算法
在靜態工具箱中,您能夠定義一次計算圖,對其進行編譯,而後將實例流式傳輸給它。
在動態工具包中,您能夠爲每一個實例定義計算圖。 它永遠不會被編譯而且是即時執行的。
動態工具包還有一個優勢,那就是更容易調試,代碼更像主機語言(個人意思是pytorch和dynet看起來更像實際的python代碼,而不是keras或theano)。網絡
Bi-LSTM Conditional Random Field (Bi-LSTM CRF)
對於本節,咱們將看到用於命名實體識別的Bi-LSTM條件隨機場的完整複雜示例。 上面的LSTM標記符一般足以用於詞性標註,可是像CRF這樣的序列模型對於NER上的強大性能很是重要。 假設熟悉CRF。 雖然這個名字聽起來很可怕,但全部模型都是CRF,可是LSTM提供了特徵。 這是一個高級模型,比本教程中的任何早期模型複雜得多。app
實現細節:
下面的例子在 log 空間中實現了計算微分函數的正向算法,以及要解碼的維特比算法。反向傳播將自動爲咱們計算梯度。咱們沒必要用手作任何事。less
這個算法用來演示,沒有優化。若是您瞭解正在發生的事情,您可能會很快看到,在轉發算法中迭代下一個標記多是在一個大型操做中完成的。我想用代碼來提升可讀性。若是你想作相關的改變,你能夠用這個標記器來完成真正的任務。dom
# Author: Robert Guthrie import torch import torch.autograd as autograd import torch.nn as nn import torch.optim as optim torch.manual_seed(1)
幫助程序函數,使代碼更具可讀性。ide
def argmax(vec): # return the argmax as a python int _, idx = torch.max(vec, 1) return idx.item() def prepare_sequence(seq, to_ix): idxs = [to_ix[w] for w in seq] return torch.tensor(idxs, dtype=torch.long) # Compute log sum exp in a numerically stable way for the forward algorithm def log_sum_exp(vec): max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) return max_score + \ torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
建立模型函數
class BiLSTM_CRF(nn.Module): def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim): super(BiLSTM_CRF, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.vocab_size = vocab_size self.tag_to_ix = tag_to_ix self.tagset_size = len(tag_to_ix) self.word_embeds = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True) # Maps the output of the LSTM into tag space. self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) # Matrix of transition parameters. Entry i,j is the score of # transitioning *to* i *from* j. self.transitions = nn.Parameter( torch.randn(self.tagset_size, self.tagset_size)) # These two statements enforce the constraint that we never transfer # to the start tag and we never transfer from the stop tag self.transitions.data[tag_to_ix[START_TAG], :] = -10000 self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 self.hidden = self.init_hidden() def init_hidden(self): return (torch.randn(2, 1, self.hidden_dim // 2), torch.randn(2, 1, self.hidden_dim // 2)) def _forward_alg(self, feats): # Do the forward algorithm to compute the partition function init_alphas = torch.full((1, self.tagset_size), -10000.) # START_TAG has all of the score. init_alphas[0][self.tag_to_ix[START_TAG]] = 0. # Wrap in a variable so that we will get automatic backprop forward_var = init_alphas # Iterate through the sentence for feat in feats: alphas_t = [] # The forward tensors at this timestep for next_tag in range(self.tagset_size): # broadcast the emission score: it is the same regardless of # the previous tag emit_score = feat[next_tag].view( 1, -1).expand(1, self.tagset_size) # the ith entry of trans_score is the score of transitioning to # next_tag from i trans_score = self.transitions[next_tag].view(1, -1) # The ith entry of next_tag_var is the value for the # edge (i -> next_tag) before we do log-sum-exp next_tag_var = forward_var + trans_score + emit_score # The forward variable for this tag is log-sum-exp of all the # scores. alphas_t.append(log_sum_exp(next_tag_var).view(1)) forward_var = torch.cat(alphas_t).view(1, -1) terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] alpha = log_sum_exp(terminal_var) return alpha def _get_lstm_features(self, sentence): self.hidden = self.init_hidden() embeds = self.word_embeds(sentence).view(len(sentence), 1, -1) lstm_out, self.hidden = self.lstm(embeds, self.hidden) lstm_out = lstm_out.view(len(sentence), self.hidden_dim) lstm_feats = self.hidden2tag(lstm_out) return lstm_feats def _score_sentence(self, feats, tags): # Gives the score of a provided tag sequence score = torch.zeros(1) tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags]) for i, feat in enumerate(feats): score = score + \ self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]] score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]] return score def _viterbi_decode(self, feats): backpointers = [] # Initialize the viterbi variables in log space init_vvars = torch.full((1, self.tagset_size), -10000.) init_vvars[0][self.tag_to_ix[START_TAG]] = 0 # forward_var at step i holds the viterbi variables for step i-1 forward_var = init_vvars for feat in feats: bptrs_t = [] # holds the backpointers for this step viterbivars_t = [] # holds the viterbi variables for this step for next_tag in range(self.tagset_size): # next_tag_var[i] holds the viterbi variable for tag i at the # previous step, plus the score of transitioning # from tag i to next_tag. # We don't include the emission scores here because the max # does not depend on them (we add them in below) next_tag_var = forward_var + self.transitions[next_tag] best_tag_id = argmax(next_tag_var) bptrs_t.append(best_tag_id) viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) # Now add in the emission scores, and assign forward_var to the set # of viterbi variables we just computed forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) backpointers.append(bptrs_t) # Transition to STOP_TAG terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0][best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.tag_to_ix[START_TAG] # Sanity check best_path.reverse() return path_score, best_path def neg_log_likelihood(self, sentence, tags): feats = self._get_lstm_features(sentence) forward_score = self._forward_alg(feats) gold_score = self._score_sentence(feats, tags) return forward_score - gold_score def forward(self, sentence): # dont confuse this with _forward_alg above. # Get the emission scores from the BiLSTM lstm_feats = self._get_lstm_features(sentence) # Find the best path, given the features. score, tag_seq = self._viterbi_decode(lstm_feats) return score, tag_seq
開始訓練工具
START_TAG = "<START>" STOP_TAG = "<STOP>" EMBEDDING_DIM = 5 HIDDEN_DIM = 4 # Make up some training data training_data = [( "the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split() ), ( "georgia tech is a university in georgia".split(), "B I O O O O B".split() )] word_to_ix = {} for sentence, tags in training_data: for word in sentence: if word not in word_to_ix: word_to_ix[word] = len(word_to_ix) tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4} model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4) # Check predictions before training with torch.no_grad(): precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long) print(model(precheck_sent)) # Make sure prepare_sequence from earlier in the LSTM section is loaded for epoch in range( 300): # again, normally you would NOT do 300 epochs, it is toy data for sentence, tags in training_data: # Step 1. Remember that Pytorch accumulates gradients. # We need to clear them out before each instance model.zero_grad() # Step 2. Get our inputs ready for the network, that is, # turn them into Tensors of word indices. sentence_in = prepare_sequence(sentence, word_to_ix) targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long) # Step 3. Run our forward pass. loss = model.neg_log_likelihood(sentence_in, targets) # Step 4. Compute the loss, gradients, and update the parameters by # calling optimizer.step() loss.backward() optimizer.step() # Check predictions after training with torch.no_grad(): precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) print(model(precheck_sent)) # We got it!
輸出
(tensor(2.6907), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1]) (tensor(20.4906), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])
咱們沒有必要在進行解碼時建立計算圖,由於咱們不會從維特比路徑得分反向傳播。 由於不管如何咱們都有它,嘗試訓練標記器,其中損失函數是維特比路徑得分和測試標準路徑得分之間的差別。 應該清楚的是,當預測的標籤序列是正確的標籤序列時,該功能是非負的和0。 這基本上是結構感知器。
因爲已經實現了 Viterbi 和score_sentence ,所以這種修改應該很短。 這是取決於訓練實例的計算圖形的示例。 雖然我沒有嘗試在靜態工具包中實現它,但我想它可能但不那麼直截了當。
拿起一些真實數據並進行比較!
更多 PyTorch 實戰教程:http://pytorchchina.com/