PyTorch 高級實戰教程:基於 BI-LSTM CRF 實現命名實體識別和中文分詞

前言:譯者實測 PyTorch 代碼很是簡潔易懂,只須要將中文分詞的數據集預處理成做者提到的格式,便可很快的就遷移了這個代碼到中文分詞中,相關的代碼後續將會分享。html

具體的數據格式,這種方式並不適合處理不少的數據,可是對於 demo 來講很是友好,把英文改爲中文,標籤改爲分詞問題中的 「BEMS」 就能夠跑起來了。python

# Make up some training data
training_data = [(
    "the wall street journal reported today that apple corporation made money".split(),
    "B I I I O O O B I O O".split()
), (
    "georgia tech is a university in georgia".split(),
    "B I O O O O B".split()
)]

Pytorch是一個動態神經網絡工具包。 動態工具包的另外一個例子是Dynet(我之因此提到這一點,由於與Pytorch和Dynet的工做方式相似。若是你在Dynet中看到一個例子,它可能會幫助你在Pytorch中實現它)。 相反的是靜態工具包,包括Theano,Keras,TensorFlow等。核心區別以下:算法

在靜態工具箱中,您能夠定義一次計算圖,對其進行編譯,而後將實例流式傳輸給它。
在動態工具包中,您能夠爲每一個實例定義計算圖。 它永遠不會被編譯而且是即時執行的。
動態工具包還有一個優勢,那就是更容易調試,代碼更像主機語言(個人意思是pytorch和dynet看起來更像實際的python代碼,而不是keras或theano)。網絡

Bi-LSTM Conditional Random Field (Bi-LSTM CRF)
對於本節,咱們將看到用於命名實體識別的Bi-LSTM條件隨機場的完整複雜示例。 上面的LSTM標記符一般足以用於詞性標註,可是像CRF這樣的序列模型對於NER上的強大性能很是重要。 假設熟悉CRF。 雖然這個名字聽起來很可怕,但全部模型都是CRF,可是LSTM提供了特徵。 這是一個高級模型,比本教程中的任何早期模型複雜得多。app

實現細節:
下面的例子在 log 空間中實現了計算微分函數的正向算法,以及要解碼的維特比算法。反向傳播將自動爲咱們計算梯度。咱們沒必要用手作任何事。less

這個算法用來演示,沒有優化。若是您瞭解正在發生的事情,您可能會很快看到,在轉發算法中迭代下一個標記多是在一個大型操做中完成的。我想用代碼來提升可讀性。若是你想作相關的改變,你能夠用這個標記器來完成真正的任務。dom

# Author: Robert Guthrie

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim

torch.manual_seed(1)

幫助程序函數,使代碼更具可讀性。ide

def argmax(vec):
    # return the argmax as a python int
    _, idx = torch.max(vec, 1)
    return idx.item()


def prepare_sequence(seq, to_ix):
    idxs = [to_ix[w] for w in seq]
    return torch.tensor(idxs, dtype=torch.long)


# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
    max_score = vec[0, argmax(vec)]
    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
    return max_score + \
        torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))

建立模型函數

class BiLSTM_CRF(nn.Module):

    def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
        super(BiLSTM_CRF, self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.vocab_size = vocab_size
        self.tag_to_ix = tag_to_ix
        self.tagset_size = len(tag_to_ix)

        self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
                            num_layers=1, bidirectional=True)

        # Maps the output of the LSTM into tag space.
        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)

        # Matrix of transition parameters.  Entry i,j is the score of
        # transitioning *to* i *from* j.
        self.transitions = nn.Parameter(
            torch.randn(self.tagset_size, self.tagset_size))

        # These two statements enforce the constraint that we never transfer
        # to the start tag and we never transfer from the stop tag
        self.transitions.data[tag_to_ix[START_TAG], :] = -10000
        self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000

        self.hidden = self.init_hidden()

    def init_hidden(self):
        return (torch.randn(2, 1, self.hidden_dim // 2),
                torch.randn(2, 1, self.hidden_dim // 2))

    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        init_alphas = torch.full((1, self.tagset_size), -10000.)
        # START_TAG has all of the score.
        init_alphas[0][self.tag_to_ix[START_TAG]] = 0.

        # Wrap in a variable so that we will get automatic backprop
        forward_var = init_alphas

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward tensors at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].view(
                    1, -1).expand(1, self.tagset_size)
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].view(1, -1)
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = forward_var + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var).view(1))
            forward_var = torch.cat(alphas_t).view(1, -1)
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha

    def _get_lstm_features(self, sentence):
        self.hidden = self.init_hidden()
        embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
        lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
        lstm_feats = self.hidden2tag(lstm_out)
        return lstm_feats

    def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = torch.zeros(1)
        tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
        for i, feat in enumerate(feats):
            score = score + \
                self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
        score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
        return score

    def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        init_vvars = torch.full((1, self.tagset_size), -10000.)
        init_vvars[0][self.tag_to_ix[START_TAG]] = 0

        # forward_var at step i holds the viterbi variables for step i-1
        forward_var = init_vvars
        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = forward_var + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
            # Now add in the emission scores, and assign forward_var to the set
            # of viterbi variables we just computed
            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0][best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag_to_ix[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path

    def neg_log_likelihood(self, sentence, tags):
        feats = self._get_lstm_features(sentence)
        forward_score = self._forward_alg(feats)
        gold_score = self._score_sentence(feats, tags)
        return forward_score - gold_score

    def forward(self, sentence):  # dont confuse this with _forward_alg above.
        # Get the emission scores from the BiLSTM
        lstm_feats = self._get_lstm_features(sentence)

        # Find the best path, given the features.
        score, tag_seq = self._viterbi_decode(lstm_feats)
        return score, tag_seq

開始訓練工具

START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4

# Make up some training data
training_data = [(
    "the wall street journal reported today that apple corporation made money".split(),
    "B I I I O O O B I O O".split()
), (
    "georgia tech is a university in georgia".split(),
    "B I O O O O B".split()
)]

word_to_ix = {}
for sentence, tags in training_data:
    for word in sentence:
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)

tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}

model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)

# Check predictions before training
with torch.no_grad():
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
    print(model(precheck_sent))

# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(
        300):  # again, normally you would NOT do 300 epochs, it is toy data
    for sentence, tags in training_data:
        # Step 1. Remember that Pytorch accumulates gradients.
        # We need to clear them out before each instance
        model.zero_grad()

        # Step 2. Get our inputs ready for the network, that is,
        # turn them into Tensors of word indices.
        sentence_in = prepare_sequence(sentence, word_to_ix)
        targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)

        # Step 3. Run our forward pass.
        loss = model.neg_log_likelihood(sentence_in, targets)

        # Step 4. Compute the loss, gradients, and update the parameters by
        # calling optimizer.step()
        loss.backward()
        optimizer.step()

# Check predictions after training
with torch.no_grad():
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    print(model(precheck_sent))
# We got it!

輸出

(tensor(2.6907), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1])
(tensor(20.4906), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])

咱們沒有必要在進行解碼時建立計算圖,由於咱們不會從維特比路徑得分反向傳播。 由於不管如何咱們都有它,嘗試訓練標記器,其中損失函數是維特比路徑得分和測試標準路徑得分之間的差別。 應該清楚的是,當預測的標籤序列是正確的標籤序列時,該功能是非負的和0。 這基本上是結構感知器。

因爲已經實現了 Viterbi 和score_sentence ,所以這種修改應該很短。 這是取決於訓練實例的計算圖形的示例。 雖然我沒有嘗試在靜態工具包中實現它,但我想它可能但不那麼直截了當。

拿起一些真實數據並進行比較!

原文連接:https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html#advanced-making-dynamic-decisions-and-the-bi-lstm-crf

更多 PyTorch 實戰教程:http://pytorchchina.com/

相關文章
相關標籤/搜索