Inception Net的思想是分組卷積,上一層分紅幾組卷積,卷積完成以後在把分組的結果拼接起來python
能夠進行擴展,每一個組有不少層,這裏只實現基本的分組卷積git
# 定義 Inception-Net的分組結構
def inception_block(x, output_channel_for_each_path, name):
"""inception block implementation"""
""" Args: - x: 輸入數據 - output_channel_for_each_path: 每組的輸出通道數目 eg: [10,20,30] - name: 每組的卷積命名 """
# variable_scope 在這個scope下命名不會有衝突 conv1 = 'conv1' => scope_name/conv1
with tf.variable_scope(name):
conv1_1 = tf.layers.conv2d(x,
output_channel_for_each_path[0],
(1, 1),
strides = (1,1),
padding = 'same',
activation = tf.nn.relu,
name = 'conv1_1')
conv3_3 = tf.layers.conv2d(x,
output_channel_for_each_path[1],
(3, 3),
strides = (1,1),
padding = 'same',
activation = tf.nn.relu,
name = 'conv3_3')
conv5_5 = tf.layers.conv2d(x,
output_channel_for_each_path[0],
(5, 5),
strides = (1,1),
padding = 'same',
activation = tf.nn.relu,
name = 'conv5_5')
max_pooling = tf.layers.max_pooling2d(x,
(2,2),
(2,2),
name = 'max_pooling')
# max_pooling 會使得圖像變小,因此須要padding
max_pooling_shape = max_pooling.get_shape().as_list()[1:]
input_shape = x.get_shape().as_list()[1:]
width_padding = (input_shape[0] - max_pooling_shape[0]) // 2
height_padding = (input_shape[1] - max_pooling_shape[1]) // 2
padded_pooling = tf.pad(max_pooling,
[[0,0],
[width_padding,width_padding],
[height_padding,height_padding],
[0,0]])
# 在第四個維度(通道數)上作拼接
concat_layer = tf.concat(
[conv1_1, conv3_3, conv5_5, padded_pooling],
axis = 3)
return concat_layer
x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# 將向量變成具備三通道的圖片的格式
x_image = tf.reshape(x, [-1,3,32,32])
# 32*32
x_image = tf.transpose(x_image, perm = [0, 2, 3, 1])
# 先通過一個普通的卷積層和池化層
# conv1:神經元圖,feature map,輸出圖像
conv1 = tf.layers.conv2d(x_image,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明輸出圖像的大小沒有變化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv1')
# 16*16
pooling1 = tf.layers.max_pooling2d(conv1,
(2, 2), # kernal size
(2, 2), # stride
name = 'pool1' # name爲了給這一層作一個命名,這樣會讓圖打印出來的時候會是一個有意義的圖
)
# 通過兩個個分組卷積
inception_2a = inception_block(pooling1,
[16, 16, 16],
name = 'inception_2a')
inception_2b = inception_block(inception_2a,
[16, 16, 16],
name = 'inception_2b')
# 接一個池化
pooling2 = tf.layers.max_pooling2d(inception_2b,
(2, 2),
(2, 2),
name = 'pool2'
)
# 再通過兩個分組卷積核一個池化
inception_3a = inception_block(pooling2,
[16, 16, 16],
name = 'inception_3a')
inception_3b = inception_block(inception_3a,
[16, 16, 16],
name = 'inception_3b')
pooling3 = tf.layers.max_pooling2d(inception_3b,
(2, 2),
(2, 2),
name = 'pool3'
)
# [None, 4*4*42] 將三通道的圖形轉換成矩陣
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)
# 交叉熵
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_-> softmax
# y -> one_hot
# loss = ylogy_
# bool
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
with tf.name_scope('train_op'):
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
複製代碼
Mobile-Netbash
Mobile Net 的基本結構 深度可分類的卷積 -> BN ->RELU-> 1*1 的卷積 -> BN -> RELU網絡
這裏BN先不加,這是下節課的內容app
def separable_conv_block(x,
output_channel_number,
name):
"""separable_conv block implementation"""
""" Args: - x: 輸入數據 - output_channel_number: 通過深度可分離卷積以後,再通過1*1 的卷積生成的通道數目 - name: 每組的卷積命名 """
# variable_scope 在這個scope下命名不會有衝突 conv1 = 'conv1' => scope_name/conv1
with tf.variable_scope(name):
input_channel = x.get_shape().as_list()[-1]
# 將x 在 第四個維度(axis+1) 上 拆分紅 input_channel 份
# channel_wise_x: [channel1, channel2, ...]
channel_wise_x = tf.split(x, input_channel, axis = 3)
output_channels = []
for i in range(len(channel_wise_x)):
output_channel = tf.layers.conv2d(channel_wise_x[i],
1,
(3,3),
strides = (1,1),
padding = 'same',
activation = tf.nn.relu,
name = 'conv_%d' % i)
output_channels.append(output_channel)
concat_layers = tf.concat(output_channels, axis = 3)
conv1_1 = tf.layers.conv2d(concat_layers,
output_channel_number,
(1,1),
strides = (1,1),
padding = 'same',
activation = tf.nn.relu,
name = 'conv1_1')
return conv1_1
x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# 將向量變成具備三通道的圖片的格式
x_image = tf.reshape(x, [-1,3,32,32])
# 32*32
x_image = tf.transpose(x_image, perm = [0, 2, 3, 1])
# conv1:神經元圖,feature map,輸出圖像
conv1 = tf.layers.conv2d(x_image,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明輸出圖像的大小沒有變化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv1')
# 16*16
pooling1 = tf.layers.max_pooling2d(conv1,
(2, 2), # kernal size
(2, 2), # stride
name = 'pool1' # name爲了給這一層作一個命名,這樣會讓圖打印出來的時候會是一個有意義的圖
)
separable_2a = separable_conv_block(pooling1,
32,
name = 'separable_2a')
separable_2b = separable_conv_block(separable_2a,
32,
name = 'separable_2b')
pooling2 = tf.layers.max_pooling2d(separable_2b,
(2, 2),
(2, 2),
name = 'pool2'
)
separable_3a = separable_conv_block(pooling2,
32,
name = 'separable_3a')
separable_3b = separable_conv_block(separable_3a,
32,
name = 'separable_3b')
pooling3 = tf.layers.max_pooling2d(separable_3b,
(2, 2),
(2, 2),
name = 'pool3')
# [None, 4*4*42] 將三通道的圖形轉換成矩陣
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)
# 交叉熵
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_-> softmax
# y -> one_hot
# loss = ylogy_
# bool
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
with tf.name_scope('train_op'):
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
複製代碼
這裏的準確率是10000次百分之60,這是由於mobile net 的 參數減少和計算率減少影響了準確率。ide
這裏的訓練咱們都使用的是一萬次訓練,真正的神經網絡訓練遠不止於此,可能會達到100萬次的規模ui