JavaShuo
欄目
標籤
Weighted-Entropy-based Quantization for Deep Neural Networks
時間 2020-12-24
原文
原文鏈接
本文提出了一種綜合考慮權重的重要性和頻率來進行量化的方式。它與其它量化方式的對比: 作者首先定義了被稱爲權重熵的變量: 這裏Pn代表了權重的頻率,In代表了它的重要性。作者設定了n個量化簇(cluster),i(n,m)是計算第n個簇的第m個權重的重要性的函數,作者這裏簡單地選擇了平方函數。 上圖是權重量化的僞代碼:首先用平方函數計算每個權重的重要性,然後從小到大對其排序,並將它們均勻分爲n個間隔
>>阅读原文<<
相關文章
1.
Weighted-Entropy-based Quantization for Deep Neural Networks
2.
Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
3.
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
4.
Deep Neural Networks for Object Detection
5.
Aggregated Residual Transformations for Deep Neural Networks
6.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
7.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
8.
deep compression:compressing deep neural networks with pruning,trained quantization and huffman codi
9.
Ternary Neural Networks with Fine-Grained Quantization
10.
Improving Deep Neural Networks
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
PHP開發工具
•
C# 中 foreach 遍歷的用法
相關標籤/搜索
networks
quantization
neural
deep
Deep Learning
Deep Hash
wide&deep
deep sort
wide&&deep
for...of
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
.Net core webapi2.1生成exe可執行文件
2.
查看dll信息工具-oleview
3.
c++初學者
4.
VM下載及安裝
5.
win10下如何安裝.NetFrame框架
6.
WIN10 安裝
7.
JAVA的環境配置
8.
idea全局配置maven
9.
vue項目啓動
10.
SVN使用-Can't remove directoryXXXX,目錄不是空的,項目報錯,有紅叉
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Weighted-Entropy-based Quantization for Deep Neural Networks
2.
Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
3.
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
4.
Deep Neural Networks for Object Detection
5.
Aggregated Residual Transformations for Deep Neural Networks
6.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
7.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
8.
deep compression:compressing deep neural networks with pruning,trained quantization and huffman codi
9.
Ternary Neural Networks with Fine-Grained Quantization
10.
Improving Deep Neural Networks
>>更多相關文章<<