JavaShuo
欄目
標籤
Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
時間 2020-12-23
原文
原文鏈接
本文提出了一種使用隨機算法量化網絡的方法。 它的思路類似INQ,都是將權重劃分爲被量化的和全精度部分,然後逐次增加量化的比例,直到百分百。不同之處在於量化權重的選取:INQ是按照從大到小的順序進行量化,而本文則根據量化誤差的大小選取: 這裏Wi是某通道權重的全精度值,Qi是其量化後的值。作者定義一個函數: 作者依據該函數提出了四種量化方案: 1:量化概率爲1/m,m爲權重的通道數。 2:線性函數
>>阅读原文<<
相關文章
1.
learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization論文
2.
Stochastic Computing + Quantization
3.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
4.
Ternary Neural Networks with Fine-Grained Quantization
5.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
6.
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
7.
Few-Shot Learning with Graph Neural Networks
8.
deep compression:compressing deep neural networks with pruning,trained quantization and huffman codi
9.
Neural Networks and Deep Learning
10.
Deep Compression : Compressing Deep Neual Networks With Pruning, Trained Quantization And Huffman Co
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XQuery 添加元素 和屬性
-
XQuery 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
Deep Learning
networks
stochastic
lowbit
quantization
accurate
neural
learning
deep
with+this
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0備份還原
2.
openstack
3.
深入探討OSPF環路問題
4.
代碼倉庫-分支策略
5.
Admin-Framework(八)系統授權介紹
6.
Sketch教程|如何訪問組件視圖?
7.
問問自己,你真的會用防抖和節流麼????
8.
[圖]微軟Office Access應用終於啓用全新圖標 Publisher已在路上
9.
微軟準備淘汰 SHA-1
10.
微軟準備淘汰 SHA-1
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization論文
2.
Stochastic Computing + Quantization
3.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
4.
Ternary Neural Networks with Fine-Grained Quantization
5.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
6.
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
7.
Few-Shot Learning with Graph Neural Networks
8.
deep compression:compressing deep neural networks with pruning,trained quantization and huffman codi
9.
Neural Networks and Deep Learning
10.
Deep Compression : Compressing Deep Neual Networks With Pruning, Trained Quantization And Huffman Co
>>更多相關文章<<