svm

  1 import tt
  2 import numpy as np
  3 import random
  4 import time
  5 st = time.time()
  6 
  7 def wTx(alpha, trainx, trainy): return np.dot(trainx, np.dot(trainx.T, alpha * trainy)) 
  8 
  9 def EI(svmst, i):
 10     wTtrainx = wTx(svmst.alpha, svmst.trainx, svmst.trainy)
 11     return wTtrainx[i] - svmst.trainy[i]
 12 
 13 def UI(svmst, i):
 14     wTtrainx = wTx(svmst.alpha, svmst.trainx, svmst.trainy)
 15     return float(svmst.trainy[i] * (wTtrainx[i]+ svmst.b) - 1) 
 16 
 17 def randomchoosej(i, m):
 18     j = i
 19     while(j==i):
 20         j = random.randint(0, m-1)
 21     return j
 22 
 23 def deltacal(v1, v2): return 2.0*np.dot(v1, v2)-np.dot(v1, v1)-np.dot(v2,v2)
 24 
 25 def LH(y1, y2, a1, a2, C):
 26     if y1 == y2: L, H = max(0, a1+a2-C), min(a1+a2, C)
 27     else: L, H = max(0, a2-a1), min(C+a2-a1, C)
 28     return L,H
 29 
 30 def newalpha(L,H,a):
 31     if a>H: a = H
 32     elif a<L: a = L
 33     return a
 34 
 35 def svm(trainx, trainy, C=0.6, toler=0.001, Maxiters=40):
 36     st1 = time.time()
 37     print "step 2: training..." # step 2: training...
 38     iter = 0; p=0; m, n = trainx.shape; alpha = np.zeros((m, 1)); b = 0.0; wTtrainx = wTx(alpha, trainx, trainy) # m*1 wTxi
 39     while (iter < Maxiters):
 40         alphachange = 0
 41         for i in xrange(m):
 42             ui = float(trainy[i] * (wTtrainx[i]+ b) - 1) # yi(w.Txi+b)
 43             if (alpha[i] < C and ui < -toler) or (alpha[i] > 0 and ui > toler): # choose i
 44                 j = randomchoosej(i, m) # randon choose j
 45                 alphajo = alpha[j].copy(); alphaio = alpha[i].copy()
 46                 L, H = LH(trainy[i], trainy[j], alphaio, alphajo, C)# update alpha or quit
 47                 delta = deltacal(trainx[i], trainx[j])
 48                 alpha[j] += trainy[j]*(wTtrainx[j]-trainy[j]-wTtrainx[i]+trainy[i])/delta; alpha[j] = newalpha(L,H,alpha[j])
 49                 if L == H: print "L=H,quit."; continue
 50                 if delta >= 0.0: print "delta>=0, quit."; continue
 51                 if (abs(alpha[j] - alphajo)[0] < 0.00001):print "j not moving enough, quit." ; continue
 52                 alpha[i] += trainy[i] * trainy[j]*(alphajo - alpha[j])
 53                 wTtrainx = wTx(alpha, trainx, trainy) # update b
 54                 b1 = trainy[i] - wTtrainx[i]; b2 = trainy[j] - wTtrainx[j]
 55                 if alpha[i]>0 and alpha[i]<C: b = b1
 56                 elif alpha[j]>0 and alpha[j]<C: b = b2
 57                 else: b = (b1+b2)/2.0
 58                 alphachange += 1;p+=1
 59                 #print "iter: %d i: %d, j: %d pairs changed %d" % (iter, i, j, alphachange)
 60         if alphachange == 0: iter += 1
 61         #print "iteration number: ", iter
 62     print "p",p
 63     for i in alpha[alpha>0]:
 64         print "%.8f" % i
 65     print 'b', b
 66     return alpha,b,(time.time()-st1)
 67 
 68 def suportvector(alpha, trainx, trainy):
 69     return trainx[np.nonzero(alpha>0)], trainy[np.nonzero(alpha>0)]
 70 
 71 class svmsture(object):
 72     def __init__(self, trainx, trainy, C, toler):
 73         self.trainx = trainx
 74         self.m = len(trainx)
 75         self.trainy = trainy
 76         self.C = C
 77         self.toler = toler
 78         self.alpha = np.zeros((self.m,1))
 79         self.b = 0.0
 80         self.ek = np.zeros((self.m,2))
 81 
 82 def choosej(svmst, i, ei):
 83     svmst.ek[i] = [1,ei]
 84     nzeiid = np.nonzero(svmst.ek)[0]
 85     if len(nzeiid) > 1:
 86         maxid = 0; maxediff = 0.0
 87         for id in nzeiid:
 88             if id == i: continue
 89             eiid = EI(svmst, id)
 90             absdiff = abs(eiid - ei)
 91             if absdiff > maxediff:
 92                 maxid = id; maxediff = absdiff
 93     else: maxid = randomchoosej(i, svmst.m)
 94     return maxid
 95 
 96 def update(svmst, i):
 97     ei = EI(svmst, i)
 98     svmst.ek[i] = [1, ei]
 99 
100 def svminner(svmst, i):
101     ei = EI(svmst, i); ui = UI(svmst, i); wTtrainx = wTx(svmst.alpha, svmst.trainx, svmst.trainy)
102     if (svmst.alpha[i] < svmst.C and ui < -svmst.toler) or (svmst.alpha[i] > 0 and ui > svmst.toler): # choose i
103         j = choosej(svmst, i, ei)
104         alphajo = svmst.alpha[j].copy(); alphaio = svmst.alpha[i].copy()
105         L, H = LH(svmst.trainy[i], svmst.trainy[j], alphaio, alphajo, svmst.C)
106         delta = deltacal(svmst.trainx[i], svmst.trainx[j])
107         if L == H: print "L=H,quit."; return 0
108         if delta >= 0.0: print "delta>=0, quit."; return 0
109         svmst.alpha[j] += svmst.trainy[j]*(wTtrainx[j]-svmst.trainy[j]-wTtrainx[i]+svmst.trainy[i])/delta; 
110         svmst.alpha[j] = newalpha(L,H,svmst.alpha[j]); update(svmst, j)
111         if (abs(svmst.alpha[j] - alphajo)[0] < 0.00001):print "j not moving enough, quit." ; return 0
112         svmst.alpha[i] += svmst.trainy[i] * svmst.trainy[j]*(alphajo - svmst.alpha[j])
113         update(svmst, i); wTtrainx = wTx(svmst.alpha, svmst.trainx, svmst.trainy)
114         b1 = svmst.trainy[i] - wTtrainx[i]; b2 = svmst.trainy[j] - wTtrainx[j]
115         if svmst.alpha[i]>0 and svmst.alpha[i]<svmst.C: svmst.b = b1
116         elif svmst.alpha[j]>0 and svmst.alpha[j]<svmst.C: svmst.b = b2
117         else: svmst.b = (b1+b2)/2.0 
118         return 1
119     else: return 0
120 
121 def svmouter(trainx, trainy, C = 0.6, toler = 0.001, Maxiters = 40):
122     svmst = svmsture(trainx, trainy, C, toler)
123     alphachange = 0; iter = 0
124     while (alphachange == 0 and iter < Maxiters):
125         for i in xrange(svmst.m):
126             alphachange += svminner(svmst, i)
127         print "FullSet, iter: %d, pairs changed %d" % (iter, alphachange)
128         iter += 1; alphachange = 1
129         while (alphachange > 0):
130             nonboundid = np.nonzero((svmst.alpha>0) * (svmst.alpha<svmst.C))[0]; alphachange = 0 ###
131             for i in nonboundid:
132                 alphachange += svminner(svmst, i)
133             print "non-bound, iter: %d, pairs changed %d" % (iter, alphachange)
134             iter += 1
135         print "iteration number: ", iter
136     return svmst.b, svmst.alpha
137 
138 def svmclassify(testx):
139     trainx, trainy = tt.loaddata('testSet')
140     b, alpha = svmouter(trainx, trainy)
141     wTtrainx = wTx(alpha, trainx, trainy)
142     testy = np.dot(testx, np.dot(trainx.T, alpha * trainy)) + b
143     print 'b',b
144     print 'alpha', alpha[alpha>0]
145     print 'w',np.dot(trainx.T, alpha * trainy)
146     print 'testy=wTtest + b',testy
147             
148 trainx, trainy = tt.loaddata('testSet')    
149 i=0
150 svmclassify(trainx[i])
151 print 'trainy[%d] %d' % (i, trainy[i])
152 """
153 svmst = svmsture(trainx, trainy, 0.6, 0.001)
154 for i in xrange(svmst.m):
155     print i
156     print "svminner",svminner(svmst, i)
157     print "type(svm)",type(svminner(svmst, i))
158 """
159 
160 
161 
162 print "cost time: ", time.time()-st
相關文章
相關標籤/搜索