決策樹模型組合之(在線)隨機森林與GBDT

前言: 決策樹這種算法有着很多良好的特性,比如說訓練時間複雜度較低,預測的過程比較快速,模型容易展示(容易將得到的決策樹做成圖片展示出來)等。但是同時, 單決策樹又有一些不好的地方,比如說容易over-fitting,雖然有一些方法,如剪枝可以減少這種情況,但是還是不夠的。 模型組合(比如說有Boosting,Bagging等)與決策樹相關的算法比較多,這些算法最終的結果是生成N(可能會有幾百棵以
相關文章
相關標籤/搜索