接口文檔(一)html
一、Lenet後端
conv_2d->relu->maxpool2d->conv_2d->relu->maxpool2d->linear->relu->linear->relu->linearapi
(僅做爲說明模型結構,無心義,下同)網絡
二、Alexneturl
features->classfiercode
features:conv_2d->relu->maxpool2d->conv2d->relu->maxpool2d->conv2d->relu->conv2d->relu->conv2d->relu->maxpool2dhtm
classfier:linear->relu->linear->relu->linearblog
三、NIN接口
conv2d->relu->conv2d->relu->conv2d->reluip
這三類模型做爲Sequential提早存儲,可直接調用,即
對應的feature中name固定爲Lenet/Alexnet/NIN,attribute根據對應結構預先編寫
(1)得到存儲的模型
字段 | 內容 |
---|---|
http請求類型 | GET |
url | [ip]/api/NeuralNetwork/network/ |
status(success) | 200 |
status(failure) | 400 |
返回值示例
[ { "id": 100, "creator": -1, "feature": {模型結構}, "time": "2019-04-18T07:35:43.036087Z" }, { "id": 101, "creator": -1, "feature": {模型結構}, "time": "2019-04-18T07:35:48.066113Z" } ]
(2) 保存模型
字段 | 內容 |
---|---|
http請求類型 | POST |
url | [ip]/api/NeuralNetwork/network/ |
status(success) | 201 |
status(failure) | 400 |
data字段
{ "creator":[用戶令牌,未登陸默認爲-1], "feature":[模型結構] }
該類用於對後端已存儲的網絡模型進行一些細節操做。
(1)根據id獲取模型
字段 | 內容 |
---|---|
http請求類型 | GET |
url | [ip]/api/NeuralNetwork/network/[id]/ |
status(success) | 200 |
status(failure) | 400 |
返回值示例
{ "id": 101, "creator": -1, "feature":[模型結構], "time": "2019-04-18T07:35:48.066113Z" }
(2)根據id修改模型
字段 | 內容 |
---|---|
http請求類型 | PUT |
url | [ip]/api/NeuralNetwork/network/[id]/ |
status(success) | 200 |
status(failure) | 400 |
data字段
{ "creator":[用戶令牌,未登陸默認爲-1], "feature":[模型結構] }
(3)根據id刪除模型
字段 | 內容 |
---|---|
http請求類型 | DELETE |
url | [ip]/api/NeuralNetwork/network/[id]/ |
status(success) | 200 |
status(failure) | 400 |
字段 | 內容 |
---|---|
http請求類型 | POST |
url | [ip]/api/NeuralNetwork/getcode/ |
status(success) | 200 |
status(failure) | 400 |
data字段
{ "creator":[用戶令牌,未登陸默認爲-1], "feature":[模型結構], "data":[static變量] }
返回值
{ "Main":[Main模塊代碼], "Model":[Model模塊代碼], "Ops":[Ops模塊代碼] }