step by step帶你fastText文本分類

本文參考原文-http://bjbsair.com/2020-03-25...
**寫在前面
**html


今天的教程是基於FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是咱們常說的fastText。python

最讓人欣喜的這篇論文配套提供了fasttext工具包。這個工具包代碼質量很是高,論文結果一鍵還原,目前已是包裝地很是專業了,這是fastText官網和其github代碼庫,以及提供了python接口,能夠直接經過pip安裝。這樣準確率高又快的模型絕對是實戰利器。git

爲了更好地理解fasttext原理,咱們如今直接復現來一遍,可是代碼中僅僅實現了最簡單的基於單詞的詞向量求平均,並未使用b-gram的詞向量,因此本身實現的文本分類效果會低於facebook開源的庫。github

論文概覽

We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.網絡

首先引用論文中的一段話來看看做者們是怎麼評價fasttext模型的表現的。session

這篇論文的模型很是之簡單,以前瞭解過word2vec的同窗能夠發現這跟CBOW的模型框架很是類似。app

【NLP實戰】手把手帶你fastText文本分類

對應上面這個模型,好比輸入是一句話,到就是這句話的單詞或者是n-gram。每個都對應一個向量,而後對這些向量取平均就獲得了文本向量,而後用這個平均向量取預測標籤。當類別很少的時候,就是最簡單的softmax;當標籤數量巨大的時候,就要用到「hierarchical softmax」了。框架

模型真的很簡單,也沒什麼能夠說的了。下面提一下論文中的兩個tricks:less

  • 「hierarchical softmax」
    類別數較多時,經過構建一個霍夫曼編碼樹來加速softmax layer的計算,和以前word2vec中的trick相同
  • 「N-gram features」
    只用unigram的話會丟掉word order信息,因此經過加入N-gram features進行補充 用hashing來減小N-gram的存儲

看了論文的實驗部分,如此簡單的模型居然能取得這麼好的效果 !dom

可是也有人指出論文中選取的數據集都是對句子詞序不是很敏感的數據集,因此獲得文中的試驗結果並不奇怪。

代碼實現

看完閹割版代碼你們記得去看看源碼噢~ 跟以前系列的同樣,定義一個fastTextModel類,而後寫網絡框架,輸入輸出placeholder,損失,訓練步驟等。

class fastTextModel(BaseModel):  
    """  
    A simple implementation of fasttext for text classification  
    """  
    def __init__(self, sequence_length, num_classes, vocab_size,  
                 embedding_size, learning_rate, decay_steps, decay_rate,  
                 l2_reg_lambda, is_training=True,  
                 initializer=tf.random_normal_initializer(stddev=0.1)):  
        self.vocab_size = vocab_size  
        self.embedding_size = embedding_size  
        self.num_classes = num_classes  
        self.sequence_length = sequence_length  
        self.learning_rate = learning_rate  
        self.decay_steps = decay_steps  
        self.decay_rate = decay_rate  
        self.is_training = is_training  
        self.l2_reg_lambda = l2_reg_lambda  
        self.initializer = initializer  
        self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
        self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
        self.global_step = tf.Variable(0, trainable=False, name='global_step')  
        self.instantiate_weight()  
        self.logits = self.inference()  
        self.loss_val = self.loss()  
        self.train_op = self.train()  
        self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
        correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
    def instantiate_weight(self):  
        with tf.name_scope('weights'):  
            self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                             initializer=self.initializer)  
            self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                initializer=self.initializer)  
            self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
    def inference(self):  
        """  
        1. word embedding  
        2. average embedding  
        3. linear classifier  
        :return:  
        """  
        # embedding layer  
        with tf.name_scope('embedding'):  
            words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
            self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
        logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
        return logits  
    def loss(self):  
        # loss  
        with tf.name_scope('loss'):  
            losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
            data_loss = tf.reduce_mean(losses)  
            l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
            data_loss += l2_loss * self.l2_reg_lambda  
            return data_loss  
    def train(self):  
        with tf.name_scope('train'):  
            learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                       self.decay_steps, self.decay_rate,  
                                                       staircase=True)  
            train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                      learning_rate=learning_rate, optimizer='Adam')  
        return train_op
def prepocess():  
    """  
    For load and process data  
    :return:  
    """  
    print("Loading data...")  
    x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
    # bulid vocabulary  
    max_document_length = max(len(x.split(' ')) for x in x_text)  
    vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
    x = np.array(list(vocab_processor.fit_transform(x_text)))  
    # shuffle  
    np.random.seed(10)  
    shuffle_indices = np.random.permutation(np.arange(len(y)))  
    x_shuffled = x[shuffle_indices]  
    y_shuffled = y[shuffle_indices]  
    # split train/test dataset  
    dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
    x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
    y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
    del x, y, x_shuffled, y_shuffled  
    print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
    print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
    return x_train, y_train, vocab_processor, x_dev, y_dev  
def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
    with tf.Graph().as_default():  
        session_conf = tf.ConfigProto(  
            # allows TensorFlow to fall back on a device with a certain operation implemented  
            allow_soft_placement= FLAGS.allow_soft_placement,  
            # allows TensorFlow log on which devices (CPU or GPU) it places operations  
            log_device_placement=FLAGS.log_device_placement  
        )  
        sess = tf.Session(config=session_conf)  
        with sess.as_default():  
            # initialize cnn  
            fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                      num_classes=y_train.shape[1],  
                      vocab_size=len(vocab_processor.vocabulary_),  
                      embedding_size=FLAGS.embedding_size,  
                      l2_reg_lambda=FLAGS.l2_reg_lambda,  
                      is_training=True,  
                      learning_rate=FLAGS.learning_rate,  
                      decay_steps=FLAGS.decay_steps,  
                      decay_rate=FLAGS.decay_rate  
                    )  
            # output dir for models and summaries  
            timestamp = str(time.time())  
            out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
            if not os.path.exists(out_dir):  
                os.makedirs(out_dir)  
            print('Writing to {} \n'.format(out_dir))  
            # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
            checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
            if not os.path.exists(checkpoint_dir):  
                os.makedirs(checkpoint_dir)  
            saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
            # Write vocabulary  
            vocab_processor.save(os.path.join(out_dir, 'vocab'))  
            # Initialize all  
            sess.run(tf.global_variables_initializer())  
            def train_step(x_batch, y_batch):  
                """  
                A single training step  
                :param x_batch:  
                :param y_batch:  
                :return:  
                """  
                feed_dict = {  
                    fasttext.input_x: x_batch,  
                    fasttext.input_y: y_batch,  
                }  
                _, step, loss, accuracy = sess.run(  
                    [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                    feed_dict=feed_dict  
                )  
                time_str = datetime.datetime.now().isoformat()  
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
            def dev_step(x_batch, y_batch):  
                """  
                Evaluate model on a dev set  
                Disable dropout  
                :param x_batch:  
                :param y_batch:  
                :param writer:  
                :return:  
                """  
                feed_dict = {  
                    fasttext.input_x: x_batch,  
                    fasttext.input_y: y_batch,  
                }  
                step, loss, accuracy = sess.run(  
                    [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                    feed_dict=feed_dict  
                )  
                time_str = datetime.datetime.now().isoformat()  
                print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
            # generate batches  
            batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
            # training loop  
            for batch in batches:  
                x_batch, y_batch = zip(*batch)  
                train_step(x_batch, y_batch)  
                current_step = tf.train.global_step(sess, fasttext.global_step)  
                if current_step % FLAGS.validate_every == 0:  
                    print('\n Evaluation:')  
                    dev_step(x_dev, y_dev)  
                    print('')  
            path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
            print('Save model checkpoint to {} \n'.format(path))  
def main(argv=None):  
    x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
    train(x_train, y_train, vocab_processor, x_dev, y_dev)  
if __name__ == '__main__':  
    tf.app.run()

本文參考資料

[1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

The End本文參考原文-http://bjbsair.com/2020-03-25...
**寫在前面
**


今天的教程是基於FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是咱們常說的fastText。

最讓人欣喜的這篇論文配套提供了fasttext工具包。這個工具包代碼質量很是高,論文結果一鍵還原,目前已是包裝地很是專業了,這是fastText官網和其github代碼庫,以及提供了python接口,能夠直接經過pip安裝。這樣準確率高又快的模型絕對是實戰利器。

爲了更好地理解fasttext原理,咱們如今直接復現來一遍,可是代碼中僅僅實現了最簡單的基於單詞的詞向量求平均,並未使用b-gram的詞向量,因此本身實現的文本分類效果會低於facebook開源的庫。

論文概覽

We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

首先引用論文中的一段話來看看做者們是怎麼評價fasttext模型的表現的。

這篇論文的模型很是之簡單,以前瞭解過word2vec的同窗能夠發現這跟CBOW的模型框架很是類似。

【NLP實戰】手把手帶你fastText文本分類

對應上面這個模型,好比輸入是一句話,到就是這句話的單詞或者是n-gram。每個都對應一個向量,而後對這些向量取平均就獲得了文本向量,而後用這個平均向量取預測標籤。當類別很少的時候,就是最簡單的softmax;當標籤數量巨大的時候,就要用到「hierarchical softmax」了。

模型真的很簡單,也沒什麼能夠說的了。下面提一下論文中的兩個tricks:

  • 「hierarchical softmax」
    類別數較多時,經過構建一個霍夫曼編碼樹來加速softmax layer的計算,和以前word2vec中的trick相同
  • 「N-gram features」
    只用unigram的話會丟掉word order信息,因此經過加入N-gram features進行補充 用hashing來減小N-gram的存儲

看了論文的實驗部分,如此簡單的模型居然能取得這麼好的效果 !

可是也有人指出論文中選取的數據集都是對句子詞序不是很敏感的數據集,因此獲得文中的試驗結果並不奇怪。

代碼實現

看完閹割版代碼你們記得去看看源碼噢~ 跟以前系列的同樣,定義一個fastTextModel類,而後寫網絡框架,輸入輸出placeholder,損失,訓練步驟等。

class fastTextModel(BaseModel):  
    """  
    A simple implementation of fasttext for text classification  
    """  
    def __init__(self, sequence_length, num_classes, vocab_size,  
                 embedding_size, learning_rate, decay_steps, decay_rate,  
                 l2_reg_lambda, is_training=True,  
                 initializer=tf.random_normal_initializer(stddev=0.1)):  
        self.vocab_size = vocab_size  
        self.embedding_size = embedding_size  
        self.num_classes = num_classes  
        self.sequence_length = sequence_length  
        self.learning_rate = learning_rate  
        self.decay_steps = decay_steps  
        self.decay_rate = decay_rate  
        self.is_training = is_training  
        self.l2_reg_lambda = l2_reg_lambda  
        self.initializer = initializer  
        self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
        self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
        self.global_step = tf.Variable(0, trainable=False, name='global_step')  
        self.instantiate_weight()  
        self.logits = self.inference()  
        self.loss_val = self.loss()  
        self.train_op = self.train()  
        self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
        correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
    def instantiate_weight(self):  
        with tf.name_scope('weights'):  
            self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                             initializer=self.initializer)  
            self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                initializer=self.initializer)  
            self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
    def inference(self):  
        """  
        1. word embedding  
        2. average embedding  
        3. linear classifier  
        :return:  
        """  
        # embedding layer  
        with tf.name_scope('embedding'):  
            words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
            self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
        logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
        return logits  
    def loss(self):  
        # loss  
        with tf.name_scope('loss'):  
            losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
            data_loss = tf.reduce_mean(losses)  
            l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
            data_loss += l2_loss * self.l2_reg_lambda  
            return data_loss  
    def train(self):  
        with tf.name_scope('train'):  
            learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                       self.decay_steps, self.decay_rate,  
                                                       staircase=True)  
            train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                      learning_rate=learning_rate, optimizer='Adam')  
        return train_op
def prepocess():  
    """  
    For load and process data  
    :return:  
    """  
    print("Loading data...")  
    x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
    # bulid vocabulary  
    max_document_length = max(len(x.split(' ')) for x in x_text)  
    vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
    x = np.array(list(vocab_processor.fit_transform(x_text)))  
    # shuffle  
    np.random.seed(10)  
    shuffle_indices = np.random.permutation(np.arange(len(y)))  
    x_shuffled = x[shuffle_indices]  
    y_shuffled = y[shuffle_indices]  
    # split train/test dataset  
    dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
    x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
    y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
    del x, y, x_shuffled, y_shuffled  
    print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
    print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
    return x_train, y_train, vocab_processor, x_dev, y_dev  
def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
    with tf.Graph().as_default():  
        session_conf = tf.ConfigProto(  
            # allows TensorFlow to fall back on a device with a certain operation implemented  
            allow_soft_placement= FLAGS.allow_soft_placement,  
            # allows TensorFlow log on which devices (CPU or GPU) it places operations  
            log_device_placement=FLAGS.log_device_placement  
        )  
        sess = tf.Session(config=session_conf)  
        with sess.as_default():  
            # initialize cnn  
            fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                      num_classes=y_train.shape[1],  
                      vocab_size=len(vocab_processor.vocabulary_),  
                      embedding_size=FLAGS.embedding_size,  
                      l2_reg_lambda=FLAGS.l2_reg_lambda,  
                      is_training=True,  
                      learning_rate=FLAGS.learning_rate,  
                      decay_steps=FLAGS.decay_steps,  
                      decay_rate=FLAGS.decay_rate  
                    )  
            # output dir for models and summaries  
            timestamp = str(time.time())  
            out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
            if not os.path.exists(out_dir):  
                os.makedirs(out_dir)  
            print('Writing to {} \n'.format(out_dir))  
            # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
            checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
            if not os.path.exists(checkpoint_dir):  
                os.makedirs(checkpoint_dir)  
            saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
            # Write vocabulary  
            vocab_processor.save(os.path.join(out_dir, 'vocab'))  
            # Initialize all  
            sess.run(tf.global_variables_initializer())  
            def train_step(x_batch, y_batch):  
                """  
                A single training step  
                :param x_batch:  
                :param y_batch:  
                :return:  
                """  
                feed_dict = {  
                    fasttext.input_x: x_batch,  
                    fasttext.input_y: y_batch,  
                }  
                _, step, loss, accuracy = sess.run(  
                    [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                    feed_dict=feed_dict  
                )  
                time_str = datetime.datetime.now().isoformat()  
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
            def dev_step(x_batch, y_batch):  
                """  
                Evaluate model on a dev set  
                Disable dropout  
                :param x_batch:  
                :param y_batch:  
                :param writer:  
                :return:  
                """  
                feed_dict = {  
                    fasttext.input_x: x_batch,  
                    fasttext.input_y: y_batch,  
                }  
                step, loss, accuracy = sess.run(  
                    [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                    feed_dict=feed_dict  
                )  
                time_str = datetime.datetime.now().isoformat()  
                print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
            # generate batches  
            batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
            # training loop  
            for batch in batches:  
                x_batch, y_batch = zip(*batch)  
                train_step(x_batch, y_batch)  
                current_step = tf.train.global_step(sess, fasttext.global_step)  
                if current_step % FLAGS.validate_every == 0:  
                    print('\n Evaluation:')  
                    dev_step(x_dev, y_dev)  
                    print('')  
            path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
            print('Save model checkpoint to {} \n'.format(path))  
def main(argv=None):  
    x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
    train(x_train, y_train, vocab_processor, x_dev, y_dev)  
if __name__ == '__main__':  
    tf.app.run()

本文參考資料

[1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

The End本文參考原文-http://bjbsair.com/2020-03-25...
**寫在前面
**


今天的教程是基於FAIR的Bag of Tricks for Efficient Text Classification[1]。也就是咱們常說的fastText。

最讓人欣喜的這篇論文配套提供了fasttext工具包。這個工具包代碼質量很是高,論文結果一鍵還原,目前已是包裝地很是專業了,這是fastText官網和其github代碼庫,以及提供了python接口,能夠直接經過pip安裝。這樣準確率高又快的模型絕對是實戰利器。

爲了更好地理解fasttext原理,咱們如今直接復現來一遍,可是代碼中僅僅實現了最簡單的基於單詞的詞向量求平均,並未使用b-gram的詞向量,因此本身實現的文本分類效果會低於facebook開源的庫。

論文概覽

We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

首先引用論文中的一段話來看看做者們是怎麼評價fasttext模型的表現的。

這篇論文的模型很是之簡單,以前瞭解過word2vec的同窗能夠發現這跟CBOW的模型框架很是類似。

【NLP實戰】手把手帶你fastText文本分類

對應上面這個模型,好比輸入是一句話,到就是這句話的單詞或者是n-gram。每個都對應一個向量,而後對這些向量取平均就獲得了文本向量,而後用這個平均向量取預測標籤。當類別很少的時候,就是最簡單的softmax;當標籤數量巨大的時候,就要用到「hierarchical softmax」了。

模型真的很簡單,也沒什麼能夠說的了。下面提一下論文中的兩個tricks:

  • 「hierarchical softmax」
    類別數較多時,經過構建一個霍夫曼編碼樹來加速softmax layer的計算,和以前word2vec中的trick相同
  • 「N-gram features」
    只用unigram的話會丟掉word order信息,因此經過加入N-gram features進行補充 用hashing來減小N-gram的存儲

看了論文的實驗部分,如此簡單的模型居然能取得這麼好的效果 !

可是也有人指出論文中選取的數據集都是對句子詞序不是很敏感的數據集,因此獲得文中的試驗結果並不奇怪。

代碼實現

看完閹割版代碼你們記得去看看源碼噢~ 跟以前系列的同樣,定義一個fastTextModel類,而後寫網絡框架,輸入輸出placeholder,損失,訓練步驟等。

class fastTextModel(BaseModel):  
    """  
    A simple implementation of fasttext for text classification  
    """  
    def __init__(self, sequence_length, num_classes, vocab_size,  
                 embedding_size, learning_rate, decay_steps, decay_rate,  
                 l2_reg_lambda, is_training=True,  
                 initializer=tf.random_normal_initializer(stddev=0.1)):  
        self.vocab_size = vocab_size  
        self.embedding_size = embedding_size  
        self.num_classes = num_classes  
        self.sequence_length = sequence_length  
        self.learning_rate = learning_rate  
        self.decay_steps = decay_steps  
        self.decay_rate = decay_rate  
        self.is_training = is_training  
        self.l2_reg_lambda = l2_reg_lambda  
        self.initializer = initializer  
        self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name='input_x')  
        self.input_y = tf.placeholder(tf.int32, [None, self.num_classes], name='input_y')  
        self.global_step = tf.Variable(0, trainable=False, name='global_step')  
        self.instantiate_weight()  
        self.logits = self.inference()  
        self.loss_val = self.loss()  
        self.train_op = self.train()  
        self.predictions = tf.argmax(self.logits, axis=1, name='predictions')  
        correct_prediction = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'), name='accuracy')  
    def instantiate_weight(self):  
        with tf.name_scope('weights'):  
            self.Embedding = tf.get_variable('Embedding', shape=[self.vocab_size, self.embedding_size],  
                                             initializer=self.initializer)  
            self.W_projection = tf.get_variable('W_projection', shape=[self.embedding_size, self.num_classes],  
                                                initializer=self.initializer)  
            self.b_projection = tf.get_variable('b_projection', shape=[self.num_classes])  
    def inference(self):  
        """  
        1. word embedding  
        2. average embedding  
        3. linear classifier  
        :return:  
        """  
        # embedding layer  
        with tf.name_scope('embedding'):  
            words_embedding = tf.nn.embedding_lookup(self.Embedding, self.input_x)  
            self.average_embedding = tf.reduce_mean(words_embedding, axis=1)  
        logits = tf.matmul(self.average_embedding, self.W_projection) +self.b_projection  
        return logits  
    def loss(self):  
        # loss  
        with tf.name_scope('loss'):  
            losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)  
            data_loss = tf.reduce_mean(losses)  
            l2_loss = tf.add_n([tf.nn.l2_loss(cand_var) for cand_var in tf.trainable_variables()  
                                if 'bias' not in cand_var.name]) * self.l2_reg_lambda  
            data_loss += l2_loss * self.l2_reg_lambda  
            return data_loss  
    def train(self):  
        with tf.name_scope('train'):  
            learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,  
                                                       self.decay_steps, self.decay_rate,  
                                                       staircase=True)  
            train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,  
                                                      learning_rate=learning_rate, optimizer='Adam')  
        return train_op
def prepocess():  
    """  
    For load and process data  
    :return:  
    """  
    print("Loading data...")  
    x_text, y = data_process.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)  
    # bulid vocabulary  
    max_document_length = max(len(x.split(' ')) for x in x_text)  
    vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)  
    x = np.array(list(vocab_processor.fit_transform(x_text)))  
    # shuffle  
    np.random.seed(10)  
    shuffle_indices = np.random.permutation(np.arange(len(y)))  
    x_shuffled = x[shuffle_indices]  
    y_shuffled = y[shuffle_indices]  
    # split train/test dataset  
    dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))  
    x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]  
    y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]  
    del x, y, x_shuffled, y_shuffled  
    print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))  
    print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))  
    return x_train, y_train, vocab_processor, x_dev, y_dev  
def train(x_train, y_train, vocab_processor, x_dev, y_dev):  
    with tf.Graph().as_default():  
        session_conf = tf.ConfigProto(  
            # allows TensorFlow to fall back on a device with a certain operation implemented  
            allow_soft_placement= FLAGS.allow_soft_placement,  
            # allows TensorFlow log on which devices (CPU or GPU) it places operations  
            log_device_placement=FLAGS.log_device_placement  
        )  
        sess = tf.Session(config=session_conf)  
        with sess.as_default():  
            # initialize cnn  
            fasttext = fastTextModel(sequence_length=x_train.shape[1],  
                      num_classes=y_train.shape[1],  
                      vocab_size=len(vocab_processor.vocabulary_),  
                      embedding_size=FLAGS.embedding_size,  
                      l2_reg_lambda=FLAGS.l2_reg_lambda,  
                      is_training=True,  
                      learning_rate=FLAGS.learning_rate,  
                      decay_steps=FLAGS.decay_steps,  
                      decay_rate=FLAGS.decay_rate  
                    )  
            # output dir for models and summaries  
            timestamp = str(time.time())  
            out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))  
            if not os.path.exists(out_dir):  
                os.makedirs(out_dir)  
            print('Writing to {} \n'.format(out_dir))  
            # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.  
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))  
            checkpoint_prefix = os.path.join(checkpoint_dir, 'model')  
            if not os.path.exists(checkpoint_dir):  
                os.makedirs(checkpoint_dir)  
            saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)  
            # Write vocabulary  
            vocab_processor.save(os.path.join(out_dir, 'vocab'))  
            # Initialize all  
            sess.run(tf.global_variables_initializer())  
            def train_step(x_batch, y_batch):  
                """  
                A single training step  
                :param x_batch:  
                :param y_batch:  
                :return:  
                """  
                feed_dict = {  
                    fasttext.input_x: x_batch,  
                    fasttext.input_y: y_batch,  
                }  
                _, step, loss, accuracy = sess.run(  
                    [fasttext.train_op, fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                    feed_dict=feed_dict  
                )  
                time_str = datetime.datetime.now().isoformat()  
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
            def dev_step(x_batch, y_batch):  
                """  
                Evaluate model on a dev set  
                Disable dropout  
                :param x_batch:  
                :param y_batch:  
                :param writer:  
                :return:  
                """  
                feed_dict = {  
                    fasttext.input_x: x_batch,  
                    fasttext.input_y: y_batch,  
                }  
                step, loss, accuracy = sess.run(  
                    [fasttext.global_step, fasttext.loss_val, fasttext.accuracy],  
                    feed_dict=feed_dict  
                )  
                time_str = datetime.datetime.now().isoformat()  
                print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))  
            # generate batches  
            batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)  
            # training loop  
            for batch in batches:  
                x_batch, y_batch = zip(*batch)  
                train_step(x_batch, y_batch)  
                current_step = tf.train.global_step(sess, fasttext.global_step)  
                if current_step % FLAGS.validate_every == 0:  
                    print('\n Evaluation:')  
                    dev_step(x_dev, y_dev)  
                    print('')  
            path = saver.save(sess, checkpoint_prefix, global_step=current_step)  
            print('Save model checkpoint to {} \n'.format(path))  
def main(argv=None):  
    x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()  
    train(x_train, y_train, vocab_processor, x_dev, y_dev)  
if __name__ == '__main__':  
    tf.app.run()

本文參考資料

[1] Bag of Tricks for Efficient Text Classification: https://arxiv.org/abs/1607.01759

The End

相關文章
相關標籤/搜索