深度學習最常用的算法:Adam優化算法

深度學習常常需要大量的時間和機算資源進行訓練,這也是困擾深度學習算法開發的重大原因。雖然我們可以採用分佈式並行訓練加速模型的學習,但所需的計算資源並沒有絲毫減少。而唯有需要資源更少、令模型收斂更快的最優化算法,才能從根本上加速機器的學習速度和效果,Adam 算法正爲此而生! Adam 優化算法是隨機梯度下降算法的擴展式,近來其廣泛用於深度學習應用中,尤其是計算機視覺和自然語言處理等任務。本文分爲兩
相關文章
相關標籤/搜索