本文主要分析 SpringCloud 中 Ribbon 負載均衡流程和原理。java
SpringCloud版本爲:Edgware.RELEASE。算法
和之前同樣,先把圖貼出來,直觀一點:數組
咱們先從 contoller 裏面看如何使用 Ribbon 來負載均衡的:緩存
@GetMapping("/user/{id}") public User findById(@PathVariable Long id) { //return this.restTemplate.getForObject("http://192.168.2.110:8001/" + id, User.class); return this.restTemplate.getForObject("http://microservice-provider-user/" + id, User.class); }
能夠看到,在整合 Ribbon 以前,請求Rest是經過IP端口直接請求。整合 Ribbon 以後,請求的地址改爲了 http://applicationName ,官方取名爲虛擬主機名(virtual host name),當 Ribbon 和 Eureka 配合使用時,會自動將虛擬主機名轉換爲微服務的實際IP地址,咱們後面會分析這個過程。bash
首先從 RestTemplate#getForObject 開始:app
public <T> T getForObject(String url, Class<T> responseType, Object... uriVariables) throws RestClientException { // 設置RequestCallback的返回類型responseType RequestCallback requestCallback = acceptHeaderRequestCallback(responseType); // 實例化responseExtractor HttpMessageConverterExtractor<T> responseExtractor = new HttpMessageConverterExtractor<T>(responseType, getMessageConverters(), logger); return execute(url, HttpMethod.GET, requestCallback, responseExtractor, uriVariables); }
接着執行到 RestTemplate 的 execute,主要是拼裝URI,若是存在baseUrl,則插入baseUrl。拼裝好後,進入實際"執行"請求的地方:負載均衡
public <T> T execute(String url, HttpMethod method, RequestCallback requestCallback, ResponseExtractor<T> responseExtractor, Object... uriVariables) throws RestClientException { // 組裝 URI URI expanded = getUriTemplateHandler().expand(url, uriVariables); // 實際"執行"的地方 return doExecute(expanded, method, requestCallback, responseExtractor); }
RestTemplate#doExecute,實際「執行」請求的地方,執行超事後,返回 response:ide
protected <T> T doExecute(URI url, HttpMethod method, RequestCallback requestCallback, ResponseExtractor<T> responseExtractor) throws RestClientException { ClientHttpResponse response = null; try { // 實例化請求,url爲請求地址,method爲GET ClientHttpRequest request = createRequest(url, method); if (requestCallback != null) {// AcceptHeaderRequestCallback requestCallback.doWithRequest(request); } // 實際處理請求的地方 response = request.execute(); // 處理response,記錄日誌和調用對應的錯誤處理器 handleResponse(url, method, response); if (responseExtractor != null) {// 使用前面的HttpMessageConverterExtractor從Response裏面抽取數據 return responseExtractor.extractData(response); } else { return null; } } ...... }
到了請求被執行的地方,AbstractClientHttpRequest#execute,跳轉到 executeInternal:微服務
public final ClientHttpResponse execute() throws IOException { // 斷言請求還沒被執行過 assertNotExecuted(); // 跳轉到 executeInternal 處理請求 ClientHttpResponse result = executeInternal(this.headers); // 標記請求爲已經執行過 this.executed = true; return result; }
AbstractBufferingClientHttpRequest#executeInternal,AbstractBufferingClientHttpRequest是AbstractClientHttpRequest的子抽象類,做用是緩存output,使用了一個字節數組輸出流:源碼分析
protected ClientHttpResponse executeInternal(HttpHeaders headers) throws IOException { // 首次進來,bytes內容爲空 byte[] bytes = this.bufferedOutput.toByteArray(); if (headers.getContentLength() < 0) { // 設置 Content-Length 爲 1 headers.setContentLength(bytes.length); } // 模板方法,跳轉到了實現類中的方法,InterceptingClientHttpRequest#executeInternal ClientHttpResponse result = executeInternal(headers, bytes); // 拿到結果後,清空緩存 this.bufferedOutput = null; return result; }
executeInternal是一個抽象方法,跳轉到了其實現類InterceptingClientHttpRequest#executeInternal:
protected final ClientHttpResponse executeInternal(HttpHeaders headers, byte[] bufferedOutput) throws IOException { InterceptingRequestExecution requestExecution = new InterceptingRequestExecution(); // InterceptingRequestExecution是一個內部類 return requestExecution.execute(this, bufferedOutput); } // 內部類,負責執行請求 private class InterceptingRequestExecution implements ClientHttpRequestExecution { private final Iterator<ClientHttpRequestInterceptor> iterator;// 全部HttpRequest的攔截器 public InterceptingRequestExecution() { this.iterator = interceptors.iterator(); } @Override public ClientHttpResponse execute(HttpRequest request, byte[] body) throws IOException { if (this.iterator.hasNext()) {// 若是還有下一個攔截器,則執行其攔截方法 // 這裏的攔截器是 MetricsClientHttpRequestInterceptor,對應"metrics"信息,記錄執行時間和結果 ClientHttpRequestInterceptor nextInterceptor = this.iterator.next(); // 執行攔截方法 return nextInterceptor.intercept(request, body, this); } ...... } }
跳轉到了攔截器 MetricsClientHttpRequestInterceptor 的攔截方法:
public ClientHttpResponse intercept(HttpRequest request, byte[] body, ClientHttpRequestExecution execution) throws IOException { long startTime = System.nanoTime();// 標記開始執行時間 ClientHttpResponse response = null; try { // 傳入請求和Body,處理執行,又跳轉回 InterceptingRequestExecution response = execution.execute(request, body); return response; } finally {// 在執行完方法,返回response以前,記錄一下執行的信息 SmallTagMap.Builder builder = SmallTagMap.builder(); for (MetricsTagProvider tagProvider : tagProviders) { for (Map.Entry<String, String> tag : tagProvider .clientHttpRequestTags(request, response).entrySet()) { builder.add(Tags.newTag(tag.getKey(), tag.getValue())); } } MonitorConfig.Builder monitorConfigBuilder = MonitorConfig .builder(metricName); monitorConfigBuilder.withTags(builder); // 記錄執行時間 servoMonitorCache.getTimer(monitorConfigBuilder.build()) .record(System.nanoTime() - startTime, TimeUnit.NANOSECONDS); } }
又跳轉回了 InterceptingRequestExecution,下個攔截器是 - LoadBalancerInterceptor,最後的Boss,調用LoadBalancerClient完成請求的負載。
LoadBalancerInterceptor#intercept,主角登場了,終於等到你,還好沒放棄:
public ClientHttpResponse intercept(final HttpRequest request, final byte[] body, final ClientHttpRequestExecution execution) throws IOException { // 獲取原始URI final URI originalUri = request.getURI(); // 獲取請求中的服務名字,也就是所謂的"虛擬主機名" String serviceName = originalUri.getHost(); // 轉由 LoadBalancerClient 處理請求 return this.loadBalancer.execute(serviceName, requestFactory.createRequest(request, body, execution)); }
下面空一行先停下來休息一下,而後看看,負載均衡是怎樣實現的。
LoadBalancerInterceptor這裏默認的實現是 RibbonLoadBalancerClient,Ribbon是Netflix發佈的負載均衡器。
RibbonLoadBalancerClient#execute,負載均衡算法選出實際處理請求的Server:
public <T> T execute(String serviceId, LoadBalancerRequest<T> request) throws IOException { // serviceId即前面的虛擬主機名 "microservice-provider-user",獲取loadBalancer //這裏獲取到的是 DynamicServerListLoadBalancer ILoadBalancer loadBalancer = getLoadBalancer(serviceId); // 基於loadBalancer,選擇實際處理請求的服務提供者 Server server = getServer(loadBalancer); if (server == null) { throw new IllegalStateException("No instances available for " + serviceId); } RibbonServer ribbonServer = new RibbonServer(serviceId, server, isSecure(server, serviceId), serverIntrospector(serviceId).getMetadata(server)); return execute(serviceId, ribbonServer, request); }
RibbonLoadBalancerClient#getServer,轉交 loadBalancer 選擇Server:
protected Server getServer(ILoadBalancer loadBalancer) { if (loadBalancer == null) { return null; } // 由 loadBalancer 完成選Server的重任,這裏的 key 是默認值 "default" return loadBalancer.chooseServer("default"); // TODO: better handling of key }
chooseServer也是一個抽象的模板方法,最後的實現是 ZoneAwareLoadBalancer#chooseServer:
public Server chooseServer(Object key) { if (!ENABLED.get() || getLoadBalancerStats().getAvailableZones().size() <= 1) { logger.debug("Zone aware logic disabled or there is only one zone"); // 到了 BaseLoadBalancer的chooseServer return super.chooseServer(key); } ...... }
BaseLoadBalancer#chooseServer,轉交規則來選擇Server:
public Server chooseServer(Object key) { if (counter == null) { counter = createCounter(); } // counter是一個計數器,起始值是"0",下面自增一次,變爲 "1" counter.increment(); if (rule == null) { return null; } else { try { // 默認的挑選規則是 "ZoneAvoidanceRule" return rule.choose(key); } catch (Exception e) { logger.warn("LoadBalancer [{}]: Error choosing server for key {}", name, key, e); return null; } } }
PredicateBasedRule是ZoneAvoidanceRule的父類。PredicateBasedRule#choose,能夠看到,基礎負載規則採用的是"RoundRobin"即輪詢的方式:
public Server choose(Object key) { ILoadBalancer lb = getLoadBalancer(); Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key); if (server.isPresent()) { return server.get(); } else { return null; } }
下面分析"輪詢"的過程,AbstractServerPredicate#chooseRoundRobinAfterFiltering,傳入Server列表的長度,自增取模實現:
public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) { // 首先拿到全部"合格"的Server List<Server> eligible = getEligibleServers(servers, loadBalancerKey); if (eligible.size() == 0) { return Optional.absent(); } // 在 incrementAndGetModulo 中獲取,"自增取模" return Optional.of(eligible.get(incrementAndGetModulo(eligible.size()))); }
AbstractServerPredicate#incrementAndGetModulo,維護了一個nextIndex,記錄下次請求的下標:
private int incrementAndGetModulo(int modulo) { for (;;) { int current = nextIndex.get();// 第一次 current是"0" int next = (current + 1) % modulo;// current+1對size取模,做爲下次的"current" // "0" == current,則以原子方式將該值設置爲 next if (nextIndex.compareAndSet(current, next)) return current; } }
最後,咱們經過控制檯來驗證一下請求是否是"輪詢"分配到服務提供者的,本地啓動了8000和8001兩個Provider:
2018-12-09 18:55:30.794 c.i.c.s.user.controller.MovieController : microservice-provider-user:192.168.2.117:8001 2018-12-09 18:55:33.196 c.i.c.s.user.controller.MovieController : microservice-provider-user:192.168.2.117:8000 2018-12-09 18:55:34.713 c.i.c.s.user.controller.MovieController : microservice-provider-user:192.168.2.117:8001 2018-12-09 18:55:34.975 c.i.c.s.user.controller.MovieController : microservice-provider-user:192.168.2.117:8000 2018-12-09 18:55:35.175 c.i.c.s.user.controller.MovieController : microservice-provider-user:192.168.2.117:8001 2018-12-09 18:55:35.351 c.i.c.s.user.controller.MovieController : microservice-provider-user:192.168.2.117:8000 2018-12-09 18:55:35.534 c.i.c.s.user.controller.MovieController : microservice-provider-user:192.168.2.117:8001
能夠看到,請求確實被輪詢給兩個Provider處理的。
至此,咱們完成了 SpringCloud 中 Ribbon 負載均衡的過程,知道了默認採用的是"輪詢"的方式,實現是經過維護一個index,自增後取模來做爲下標挑選實際響應請求的Server。除了輪詢的方式,還有隨機等算法。感興趣能夠按照相似思路分析測試一下。