【TensorFlow】使用遷移學習訓練本身的模型

最近在研究tensorflow的遷移學習,網上看了很多文章,奈何不是文章寫得不清楚就是代碼有細節不對沒法運行,下面給出使用遷移學習訓練本身的圖像分類及預測問題所有操做和代碼,但願能幫到剛入門的同窗。html

你們都知道TensorFlow有遷移學習模型,能夠將別人訓練好的模型用本身的模型上node

即不修改bottleneck層以前的參數,只須要訓練最後一層全鏈接層就能夠了。python

咱們就以最經典的貓狗分類來示範,使用的是Google提供的inception v3模型。git

如下均在Windows下成功實現,mac用戶只要修改最後腳本命令中的路徑就能夠web

數據準備

先創建一個文件夾,就命名爲tensorflow吧express

首先將你的訓練集分好類,將照片放在對應文件夾中,拿本例來講,你須要在tensorflow文件夾中創建一個文件夾data而後在data文件夾中創建兩個文件夾cat和dog而後分別將貓咪和狗狗的照片對應放進這兩個夾中(注意每一個文件夾中照片要大於20張)apache

而後創建一個空文件夾bottleneck在tensorflow主文件夾下用於保存訓練數據瀏覽器

再創建一個空文件夾summaries用於後面使用tensorboard就ok了bash

訓練代碼

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##     http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""Simple transfer learning with an Inception v3 architecture model.
With support for TensorBoard.
This example shows how to take a Inception v3 architecture model trained on
ImageNet images, and train a new top layer that can recognize other classes of
images.
The top layer receives as input a 2048-dimensional vector for each image. We
train a softmax layer on top of this representation. Assuming the softmax layer
contains N labels, this corresponds to learning N + 2048*N model parameters
corresponding to the learned biases and weights.
Here's an example, which assumes you have a folder containing class-named
subfolders, each full of images for each label. The example folder flower_photos
should have a structure like this:
~/flower_photos/daisy/photo1.jpg
~/flower_photos/daisy/photo2.jpg
...
~/flower_photos/rose/anotherphoto77.jpg
...
~/flower_photos/sunflower/somepicture.jpg
The subfolder names are important, since they define what label is applied to
each image, but the filenames themselves don't matter. Once your images are
prepared, you can run the training with a command like this:
```bash
bazel build tensorflow/examples/image_retraining:retrain && \
bazel-bin/tensorflow/examples/image_retraining/retrain \
   --image_dir ~/flower_photos
```
Or, if you have a pip installation of tensorflow, `retrain.py` can be run
without bazel:
```bash
python tensorflow/examples/image_retraining/retrain.py \
   --image_dir ~/flower_photos
```
You can replace the image_dir argument with any folder containing subfolders of
images. The label for each image is taken from the name of the subfolder it's
in.
This produces a new model file that can be loaded and run by any TensorFlow
program, for example the label_image sample code.
To use with TensorBoard:
By default, this script will log summaries to /tmp/retrain_logs directory
Visualize the summaries with this command:
tensorboard --logdir /tmp/retrain_logs
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
from datetime import datetime
import hashlib
import os.path
import random
import re
import struct
import sys
import tarfile

import numpy as np
from six.moves import urllib
import tensorflow as tf

from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import gfile
from tensorflow.python.util import compat


FLAGS = None# These are all parameters that are tied to the particular model architecture# we're using for Inception v3. These include things like tensor names and their# sizes. If you want to adapt this script to work with another model, you will# need to update these to reflect the values in the network you're using.# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'# pylint: enable=line-too-long
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
BOTTLENECK_TENSOR_SIZE = 2048
MODEL_INPUT_WIDTH = 299
MODEL_INPUT_HEIGHT = 299
MODEL_INPUT_DEPTH = 3
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
RESIZED_INPUT_TENSOR_NAME = 'ResizeBilinear:0'
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1# ~134Mdef create_image_lists(image_dir, testing_percentage, validation_percentage):"""Builds a list of training images from the file system.
 Analyzes the sub folders in the image directory, splits them into stable
 training, testing, and validation sets, and returns a data structure
 describing the lists of images for each label and their paths.
 Args:
   image_dir: String path to a folder containing subfolders of images.
   testing_percentage: Integer percentage of the images to reserve for tests.
   validation_percentage: Integer percentage of images reserved for validation.
 Returns:
   A dictionary containing an entry for each label subfolder, with images split
   into training, testing, and validation sets within each label.
 """
ifnot gfile.Exists(image_dir):
   print("Image directory '" + image_dir + "' not found.")
   returnNone
 result = {}
 sub_dirs = [x[0] for x in gfile.Walk(image_dir)]
 # The root directory comes first, so skip it.
 is_root_dir = Truefor sub_dir in sub_dirs:
   if is_root_dir:
     is_root_dir = Falsecontinue
   extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
   file_list = []
   dir_name = os.path.basename(sub_dir)
   if dir_name == image_dir:
     continue
   print("Looking for images in '" + dir_name + "'")
   for extension in extensions:
     file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
     file_list.extend(gfile.Glob(file_glob))
   ifnot file_list:
     print('No files found')
     continueif len(file_list) < 20:
     print('WARNING: Folder has less than 20 images, which may cause issues.')
   elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
     print('WARNING: Folder {} has more than {} images. Some images will ''never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
   label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
   training_images = []
   testing_images = []
   validation_images = []
   for file_name in file_list:
     base_name = os.path.basename(file_name)
     # We want to ignore anything after '_nohash_' in the file name when# deciding which set to put an image in, the data set creator has a way of# grouping photos that are close variations of each other. For example# this is used in the plant disease data set to group multiple pictures of# the same leaf.
     hash_name = re.sub(r'_nohash_.*$', '', file_name)
     # This looks a bit magical, but we need to decide whether this file should# go into the training, testing, or validation sets, and we want to keep# existing files in the same set even if more files are subsequently# added.# To do that, we need a stable way of deciding based on just the file name# itself, so we do a hash of that and then use that to generate a# probability value that we use to assign it.
     hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()
     percentage_hash = ((int(hash_name_hashed, 16) %
                         (MAX_NUM_IMAGES_PER_CLASS + 1)) *
                        (100.0 / MAX_NUM_IMAGES_PER_CLASS))
     if percentage_hash < validation_percentage:
       validation_images.append(base_name)
     elif percentage_hash < (testing_percentage + validation_percentage):
       testing_images.append(base_name)
     else:
       training_images.append(base_name)
   result[label_name] = {
       'dir': dir_name,
       'training': training_images,
       'testing': testing_images,
       'validation': validation_images,
   }
 return result


def get_image_path(image_lists, label_name, index, image_dir, category):""""Returns a path to an image for a label at the given index.
 Args:
   image_lists: Dictionary of training images for each label.
   label_name: Label string we want to get an image for.
   index: Int offset of the image we want. This will be moduloed by the
   available number of images for the label, so it can be arbitrarily large.
   image_dir: Root folder string of the subfolders containing the training
   images.
   category: Name string of set to pull images from - training, testing, or
   validation.
 Returns:
   File system path string to an image that meets the requested parameters.
 """
if label_name notin image_lists:
   tf.logging.fatal('Label does not exist %s.', label_name)
 label_lists = image_lists[label_name]
 if category notin label_lists:
   tf.logging.fatal('Category does not exist %s.', category)
 category_list = label_lists[category]
 ifnot category_list:
   tf.logging.fatal('Label %s has no images in the category %s.',
                    label_name, category)
 mod_index = index % len(category_list)
 base_name = category_list[mod_index]
 sub_dir = label_lists['dir']
 full_path = os.path.join(image_dir, sub_dir, base_name)
 return full_path


def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,
                       category)
:
""""Returns a path to a bottleneck file for a label at the given index.
 Args:
   image_lists: Dictionary of training images for each label.
   label_name: Label string we want to get an image for.
   index: Integer offset of the image we want. This will be moduloed by the
   available number of images for the label, so it can be arbitrarily large.
   bottleneck_dir: Folder string holding cached files of bottleneck values.
   category: Name string of set to pull images from - training, testing, or
   validation.
 Returns:
   File system path string to an image that meets the requested parameters.
 """
return get_image_path(image_lists, label_name, index, bottleneck_dir,
                       category) + '.txt'def create_inception_graph():""""Creates a graph from saved GraphDef file and returns a Graph object.
 Returns:
   Graph holding the trained Inception network, and various tensors we'll be
   manipulating.
 """
with tf.Graph().as_default() as graph:
   model_filename = os.path.join(
       FLAGS.model_dir, 'classify_image_graph_def.pb')
   with gfile.FastGFile(model_filename, 'rb') as f:
     graph_def = tf.GraphDef()
     graph_def.ParseFromString(f.read())
     bottleneck_tensor, jpeg_data_tensor, resized_input_tensor = (
         tf.import_graph_def(graph_def, name='', return_elements=[
             BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME,
             RESIZED_INPUT_TENSOR_NAME]))
 return graph, bottleneck_tensor, jpeg_data_tensor, resized_input_tensor


def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                           bottleneck_tensor)
:
"""Runs inference on an image to extract the 'bottleneck' summary layer.
 Args:
   sess: Current active TensorFlow Session.
   image_data: String of raw JPEG data.
   image_data_tensor: Input data layer in the graph.
   bottleneck_tensor: Layer before the final softmax.
 Returns:
   Numpy array of bottleneck values.
 """

 bottleneck_values = sess.run(
     bottleneck_tensor,
     {image_data_tensor: image_data})
 bottleneck_values = np.squeeze(bottleneck_values)
 return bottleneck_values


def maybe_download_and_extract():"""Download and extract model tar file.
 If the pretrained model we're using doesn't already exist, this function
 downloads it from the TensorFlow.org website and unpacks it into a directory.
 """

 dest_directory = FLAGS.model_dir
 ifnot os.path.exists(dest_directory):
   os.makedirs(dest_directory)
 filename = DATA_URL.split('/')[-1]
 filepath = os.path.join(dest_directory, filename)
 ifnot os.path.exists(filepath):

   def _progress(count, block_size, total_size):
     sys.stdout.write('\r>> Downloading %s %.1f%%' %
                      (filename,
                       float(count * block_size) / float(total_size) * 100.0))
     sys.stdout.flush()

   filepath, _ = urllib.request.urlretrieve(DATA_URL,
                                            filepath,
                                            _progress)
   print()
   statinfo = os.stat(filepath)
   print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
 tarfile.open(filepath, 'r:gz').extractall(dest_directory)


def ensure_dir_exists(dir_name):"""Makes sure the folder exists on disk.
 Args:
   dir_name: Path string to the folder we want to create.
 """
ifnot os.path.exists(dir_name):
   os.makedirs(dir_name)


def write_list_of_floats_to_file(list_of_floats, file_path):"""Writes a given list of floats to a binary file.
 Args:
   list_of_floats: List of floats we want to write to a file.
   file_path: Path to a file where list of floats will be stored.
 """


 s = struct.pack('d' * BOTTLENECK_TENSOR_SIZE, *list_of_floats)
 with open(file_path, 'wb') as f:
   f.write(s)


def read_list_of_floats_from_file(file_path):"""Reads list of floats from a given file.
 Args:
   file_path: Path to a file where list of floats was stored.
 Returns:
   Array of bottleneck values (list of floats).
 """
with open(file_path, 'rb') as f:
   s = struct.unpack('d' * BOTTLENECK_TENSOR_SIZE, f.read())
   return list(s)


bottleneck_path_2_bottleneck_values = {}


def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
                          image_dir, category, sess, jpeg_data_tensor,
                          bottleneck_tensor)
:
"""Create a single bottleneck file."""
 print('Creating bottleneck at ' + bottleneck_path)
 image_path = get_image_path(image_lists, label_name, index,
                             image_dir, category)
 ifnot gfile.Exists(image_path):
   tf.logging.fatal('File does not exist %s', image_path)
 image_data = gfile.FastGFile(image_path, 'rb').read()
 try:
   bottleneck_values = run_bottleneck_on_image(
       sess, image_data, jpeg_data_tensor, bottleneck_tensor)
 except:
   raise RuntimeError('Error during processing file %s' % image_path)

 bottleneck_string = ','.join(str(x) for x in bottleneck_values)
 with open(bottleneck_path, 'w') as bottleneck_file:
   bottleneck_file.write(bottleneck_string)


def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,
                            category, bottleneck_dir, jpeg_data_tensor,
                            bottleneck_tensor)
:
"""Retrieves or calculates bottleneck values for an image.
 If a cached version of the bottleneck data exists on-disk, return that,
 otherwise calculate the data and save it to disk for future use.
 Args:
   sess: The current active TensorFlow Session.
   image_lists: Dictionary of training images for each label.
   label_name: Label string we want to get an image for.
   index: Integer offset of the image we want. This will be modulo-ed by the
   available number of images for the label, so it can be arbitrarily large.
   image_dir: Root folder string  of the subfolders containing the training
   images.
   category: Name string of which  set to pull images from - training, testing,
   or validation.
   bottleneck_dir: Folder string holding cached files of bottleneck values.
   jpeg_data_tensor: The tensor to feed loaded jpeg data into.
   bottleneck_tensor: The output tensor for the bottleneck values.
 Returns:
   Numpy array of values produced by the bottleneck layer for the image.
 """

 label_lists = image_lists[label_name]
 sub_dir = label_lists['dir']
 sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
 ensure_dir_exists(sub_dir_path)
 bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
                                       bottleneck_dir, category)
 ifnot os.path.exists(bottleneck_path):
   create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
                          image_dir, category, sess, jpeg_data_tensor,
                          bottleneck_tensor)
 with open(bottleneck_path, 'r') as bottleneck_file:
   bottleneck_string = bottleneck_file.read()
 did_hit_error = Falsetry:
   bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
 except ValueError:
   print('Invalid float found, recreating bottleneck')
   did_hit_error = Trueif did_hit_error:
   create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
                          image_dir, category, sess, jpeg_data_tensor,
                          bottleneck_tensor)
   with open(bottleneck_path, 'r') as bottleneck_file:
     bottleneck_string = bottleneck_file.read()
   # Allow exceptions to propagate here, since they shouldn't happen after a# fresh creation
   bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
 return bottleneck_values


def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,
                     jpeg_data_tensor, bottleneck_tensor)
:
"""Ensures all the training, testing, and validation bottlenecks are cached.
 Because we're likely to read the same image multiple times (if there are no
 distortions applied during training) it can speed things up a lot if we
 calculate the bottleneck layer values once for each image during
 preprocessing, and then just read those cached values repeatedly during
 training. Here we go through all the images we've found, calculate those
 values, and save them off.
 Args:
   sess: The current active TensorFlow Session.
   image_lists: Dictionary of training images for each label.
   image_dir: Root folder string of the subfolders containing the training
   images.
   bottleneck_dir: Folder string holding cached files of bottleneck values.
   jpeg_data_tensor: Input tensor for jpeg data from file.
   bottleneck_tensor: The penultimate output layer of the graph.
 Returns:
   Nothing.
 """

 how_many_bottlenecks = 0
 ensure_dir_exists(bottleneck_dir)
 for label_name, label_lists in image_lists.items():
   for category in ['training', 'testing', 'validation']:
     category_list = label_lists[category]
     for index, unused_base_name in enumerate(category_list):
       get_or_create_bottleneck(sess, image_lists, label_name, index,
                                image_dir, category, bottleneck_dir,
                                jpeg_data_tensor, bottleneck_tensor)

       how_many_bottlenecks += 1if how_many_bottlenecks % 100 == 0:
         print(str(how_many_bottlenecks) + ' bottleneck files created.')


def get_random_cached_bottlenecks(sess, image_lists, how_many, category,
                                 bottleneck_dir, image_dir, jpeg_data_tensor,
                                 bottleneck_tensor)
:
"""Retrieves bottleneck values for cached images.
 If no distortions are being applied, this function can retrieve the cached
 bottleneck values directly from disk for images. It picks a random set of
 images from the specified category.
 Args:
   sess: Current TensorFlow Session.
   image_lists: Dictionary of training images for each label.
   how_many: If positive, a random sample of this size will be chosen.
   If negative, all bottlenecks will be retrieved.
   category: Name string of which set to pull from - training, testing, or
   validation.
   bottleneck_dir: Folder string holding cached files of bottleneck values.
   image_dir: Root folder string of the subfolders containing the training
   images.
   jpeg_data_tensor: The layer to feed jpeg image data into.
   bottleneck_tensor: The bottleneck output layer of the CNN graph.
 Returns:
   List of bottleneck arrays, their corresponding ground truths, and the
   relevant filenames.
 """

 class_count = len(image_lists.keys())
 bottlenecks = []
 ground_truths = []
 filenames = []
 if how_many >= 0:
   # Retrieve a random sample of bottlenecks.for unused_i in range(how_many):
     label_index = random.randrange(class_count)
     label_name = list(image_lists.keys())[label_index]
     image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
     image_name = get_image_path(image_lists, label_name, image_index,
                                 image_dir, category)
     bottleneck = get_or_create_bottleneck(sess, image_lists, label_name,
                                           image_index, image_dir, category,
                                           bottleneck_dir, jpeg_data_tensor,
                                           bottleneck_tensor)
     ground_truth = np.zeros(class_count, dtype=np.float32)
     ground_truth[label_index] = 1.0
     bottlenecks.append(bottleneck)
     ground_truths.append(ground_truth)
     filenames.append(image_name)
 else:
   # Retrieve all bottlenecks.for label_index, label_name in enumerate(image_lists.keys()):
     for image_index, image_name in enumerate(
         image_lists[label_name][category]):
       image_name = get_image_path(image_lists, label_name, image_index,
                                   image_dir, category)
       bottleneck = get_or_create_bottleneck(sess, image_lists, label_name,
                                             image_index, image_dir, category,
                                             bottleneck_dir, jpeg_data_tensor,
                                             bottleneck_tensor)
       ground_truth = np.zeros(class_count, dtype=np.float32)
       ground_truth[label_index] = 1.0
       bottlenecks.append(bottleneck)
       ground_truths.append(ground_truth)
       filenames.append(image_name)
 return bottlenecks, ground_truths, filenames


def get_random_distorted_bottlenecks(
   sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,
   distorted_image, resized_input_tensor, bottleneck_tensor)
:
"""Retrieves bottleneck values for training images, after distortions.
 If we're training with distortions like crops, scales, or flips, we have to
 recalculate the full model for every image, and so we can't use cached
 bottleneck values. Instead we find random images for the requested category,
 run them through the distortion graph, and then the full graph to get the
 bottleneck results for each.
 Args:
   sess: Current TensorFlow Session.
   image_lists: Dictionary of training images for each label.
   how_many: The integer number of bottleneck values to return.
   category: Name string of which set of images to fetch - training, testing,
   or validation.
   image_dir: Root folder string of the subfolders containing the training
   images.
   input_jpeg_tensor: The input layer we feed the image data to.
   distorted_image: The output node of the distortion graph.
   resized_input_tensor: The input node of the recognition graph.
   bottleneck_tensor: The bottleneck output layer of the CNN graph.
 Returns:
   List of bottleneck arrays and their corresponding ground truths.
 """

 class_count = len(image_lists.keys())
 bottlenecks = []
 ground_truths = []
 for unused_i in range(how_many):
   label_index = random.randrange(class_count)
   label_name = list(image_lists.keys())[label_index]
   image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
   image_path = get_image_path(image_lists, label_name, image_index, image_dir,
                               category)
   ifnot gfile.Exists(image_path):
     tf.logging.fatal('File does not exist %s', image_path)
   jpeg_data = gfile.FastGFile(image_path, 'rb').read()
   # Note that we materialize the distorted_image_data as a numpy array before# sending running inference on the image. This involves 2 memory copies and# might be optimized in other implementations.
   distorted_image_data = sess.run(distorted_image,
                                   {input_jpeg_tensor: jpeg_data})
   bottleneck = run_bottleneck_on_image(sess, distorted_image_data,
                                        resized_input_tensor,
                                        bottleneck_tensor)
   ground_truth = np.zeros(class_count, dtype=np.float32)
   ground_truth[label_index] = 1.0
   bottlenecks.append(bottleneck)
   ground_truths.append(ground_truth)
 return bottlenecks, ground_truths


def should_distort_images(flip_left_right, random_crop, random_scale,
                         random_brightness)
:
"""Whether any distortions are enabled, from the input flags.
 Args:
   flip_left_right: Boolean whether to randomly mirror images horizontally.
   random_crop: Integer percentage setting the total margin used around the
   crop box.
   random_scale: Integer percentage of how much to vary the scale by.
   random_brightness: Integer range to randomly multiply the pixel values by.
 Returns:
   Boolean value indicating whether any distortions should be applied.
 """
return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
         (random_brightness != 0))


def add_input_distortions(flip_left_right, random_crop, random_scale,
                         random_brightness)
:
"""Creates the operations to apply the specified distortions.
 During training it can help to improve the results if we run the images
 through simple distortions like crops, scales, and flips. These reflect the
 kind of variations we expect in the real world, and so can help train the
 model to cope with natural data more effectively. Here we take the supplied
 parameters and construct a network of operations to apply them to an image.
 Cropping is done by placing a bounding box at a random position in the full
 image. The cropping parameter controls the size of that box relative to the
 input image. If it's zero, then the box is the same size as the input and no
 cropping is performed. If the value is 50%, then the crop box will be half the
 width and height of the input. In a diagram it looks like this:
 <       width         >
 +---------------------+
 |                     |
 |   width - crop%     |
 |    <      >         |
 |    +------+         |
 |    |      |         |
 |    |      |         |
 |    |      |         |
 |    +------+         |
 |                     |
 |                     |
 +---------------------+

 Scaling is a lot like cropping, except that the bounding box is always
 centered and its size varies randomly within the given range. For example if
 the scale percentage is zero, then the bounding box is the same size as the
 input and no scaling is applied. If it's 50%, then the bounding box will be in
 a random range between half the width and height and full size.
 Args:
   flip_left_right: Boolean whether to randomly mirror images horizontally.
   random_crop: Integer percentage setting the total margin used around the
   crop box.
   random_scale: Integer percentage of how much to vary the scale by.
   random_brightness: Integer range to randomly multiply the pixel values by.
   graph.
 Returns:
   The jpeg input layer and the distorted result tensor.
 """


 jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')
 decoded_image = tf.image.decode_jpeg(jpeg_data, channels=MODEL_INPUT_DEPTH)
 decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
 decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
 margin_scale = 1.0 + (random_crop / 100.0)
 resize_scale = 1.0 + (random_scale / 100.0)
 margin_scale_value = tf.constant(margin_scale)
 resize_scale_value = tf.random_uniform(tensor_shape.scalar(),
                                        minval=1.0,
                                        maxval=resize_scale)
 scale_value = tf.multiply(margin_scale_value, resize_scale_value)
 precrop_width = tf.multiply(scale_value, MODEL_INPUT_WIDTH)
 precrop_height = tf.multiply(scale_value, MODEL_INPUT_HEIGHT)
 precrop_shape = tf.stack([precrop_height, precrop_width])
 precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)
 precropped_image = tf.image.resize_bilinear(decoded_image_4d,
                                             precrop_shape_as_int)
 precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])
 cropped_image = tf.random_crop(precropped_image_3d,
                                [MODEL_INPUT_HEIGHT, MODEL_INPUT_WIDTH,
                                 MODEL_INPUT_DEPTH])
 if flip_left_right:
   flipped_image = tf.image.random_flip_left_right(cropped_image)
 else:
   flipped_image = cropped_image
 brightness_min = 1.0 - (random_brightness / 100.0)
 brightness_max = 1.0 + (random_brightness / 100.0)
 brightness_value = tf.random_uniform(tensor_shape.scalar(),
                                      minval=brightness_min,
                                      maxval=brightness_max)
 brightened_image = tf.multiply(flipped_image, brightness_value)
 distort_result = tf.expand_dims(brightened_image, 0, name='DistortResult')
 return jpeg_data, distort_result


def variable_summaries(var):"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""with tf.name_scope('summaries'):
   mean = tf.reduce_mean(var)
   tf.summary.scalar('mean', mean)
   with tf.name_scope('stddev'):
     stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
   tf.summary.scalar('stddev', stddev)
   tf.summary.scalar('max', tf.reduce_max(var))
   tf.summary.scalar('min', tf.reduce_min(var))
   tf.summary.histogram('histogram', var)


def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor):"""Adds a new softmax and fully-connected layer for training.
 We need to retrain the top layer to identify our new classes, so this function
 adds the right operations to the graph, along with some variables to hold the
 weights, and then sets up all the gradients for the backward pass.
 The set up for the softmax and fully-connected layers is based on:
 https://tensorflow.org/versions/master/tutorials/mnist/beginners/index.html
 Args:
   class_count: Integer of how many categories of things we're trying to
   recognize.
   final_tensor_name: Name string for the new final node that produces results.
   bottleneck_tensor: The output of the main CNN graph.
 Returns:
   The tensors for the training and cross entropy results, and tensors for the
   bottleneck input and ground truth input.
 """
with tf.name_scope('input'):
   bottleneck_input = tf.placeholder_with_default(
       bottleneck_tensor, shape=[None, BOTTLENECK_TENSOR_SIZE],
       name='BottleneckInputPlaceholder')

   ground_truth_input = tf.placeholder(tf.float32,
                                       [None, class_count],
                                       name='GroundTruthInput')

 # Organizing the following ops as `final_training_ops` so they're easier# to see in TensorBoard
 layer_name = 'final_training_ops'with tf.name_scope(layer_name):
   with tf.name_scope('weights'):
     initial_value = tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, class_count],
                                         stddev=0.001)

     layer_weights = tf.Variable(initial_value, name='final_weights')

     variable_summaries(layer_weights)
   with tf.name_scope('biases'):
     layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
     variable_summaries(layer_biases)
   with tf.name_scope('Wx_plus_b'):
     logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
     tf.summary.histogram('pre_activations', logits)

 final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
 tf.summary.histogram('activations', final_tensor)

 with tf.name_scope('cross_entropy'):
   cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
       labels=ground_truth_input, logits=logits)
   with tf.name_scope('total'):
     cross_entropy_mean = tf.reduce_mean(cross_entropy)
 tf.summary.scalar('cross_entropy', cross_entropy_mean)

 with tf.name_scope('train'):
   optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
   train_step = optimizer.minimize(cross_entropy_mean)

 return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
         final_tensor)


def add_evaluation_step(result_tensor, ground_truth_tensor):"""Inserts the operations we need to evaluate the accuracy of our results.
 Args:
   result_tensor: The new final node that produces results.
   ground_truth_tensor: The node we feed ground truth data
   into.
 Returns:
   Tuple of (evaluation step, prediction).
 """
with tf.name_scope('accuracy'):
   with tf.name_scope('correct_prediction'):
     prediction = tf.argmax(result_tensor, 1)
     correct_prediction = tf.equal(
         prediction, tf.argmax(ground_truth_tensor, 1))
   with tf.name_scope('accuracy'):
     evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 tf.summary.scalar('accuracy', evaluation_step)
 return evaluation_step, prediction


def main(_):# Setup the directory we'll write summaries to for TensorBoardif tf.gfile.Exists(FLAGS.summaries_dir):
   tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
 tf.gfile.MakeDirs(FLAGS.summaries_dir)

 # Set up the pre-trained graph.
 maybe_download_and_extract()
 graph, bottleneck_tensor, jpeg_data_tensor, resized_image_tensor = (
     create_inception_graph())

 # Look at the folder structure, and create lists of all the images.
 image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,
                                  FLAGS.validation_percentage)
 class_count = len(image_lists.keys())
 if class_count == 0:
   print('No valid folders of images found at ' + FLAGS.image_dir)
   return-1if class_count == 1:
   print('Only one valid folder of images found at ' + FLAGS.image_dir +
         ' - multiple classes are needed for classification.')
   return-1# See if the command-line flags mean we're applying any distortions.
 do_distort_images = should_distort_images(
     FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
     FLAGS.random_brightness)

 with tf.Session(graph=graph) as sess:

   if do_distort_images:
     # We will be applying distortions, so setup the operations we'll need.
     (distorted_jpeg_data_tensor,
      distorted_image_tensor) = add_input_distortions(
          FLAGS.flip_left_right, FLAGS.random_crop,
          FLAGS.random_scale, FLAGS.random_brightness)
   else:
     # We'll make sure we've calculated the 'bottleneck' image summaries and# cached them on disk.
     cache_bottlenecks(sess, image_lists, FLAGS.image_dir,
                       FLAGS.bottleneck_dir, jpeg_data_tensor,
                       bottleneck_tensor)

   # Add the new layer that we'll be training.
   (train_step, cross_entropy, bottleneck_input, ground_truth_input,
    final_tensor) = add_final_training_ops(len(image_lists.keys()),
                                           FLAGS.final_tensor_name,
                                           bottleneck_tensor)

   # Create the operations we need to evaluate the accuracy of our new layer.
   evaluation_step, prediction = add_evaluation_step(
       final_tensor, ground_truth_input)

   # Merge all the summaries and write them out to the summaries_dir
   merged = tf.summary.merge_all()
   train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                        sess.graph)

   validation_writer = tf.summary.FileWriter(
       FLAGS.summaries_dir + '/validation')

   # Set up all our weights to their initial default values.
   init = tf.global_variables_initializer()
   sess.run(init)

   # Run the training for as many cycles as requested on the command line.for i in range(FLAGS.how_many_training_steps):
     # Get a batch of input bottleneck values, either calculated fresh every# time with distortions applied, or from the cache stored on disk.if do_distort_images:
       (train_bottlenecks,
        train_ground_truth) = get_random_distorted_bottlenecks(
            sess, image_lists, FLAGS.train_batch_size, 'training',
            FLAGS.image_dir, distorted_jpeg_data_tensor,
            distorted_image_tensor, resized_image_tensor, bottleneck_tensor)
     else:
       (train_bottlenecks,
        train_ground_truth, _) = get_random_cached_bottlenecks(
            sess, image_lists, FLAGS.train_batch_size, 'training',
            FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
            bottleneck_tensor)
     # Feed the bottlenecks and ground truth into the graph, and run a training# step. Capture training summaries for TensorBoard with the `merged` op.

     train_summary, _ = sess.run(
         [merged, train_step],
         feed_dict={bottleneck_input: train_bottlenecks,
                    ground_truth_input: train_ground_truth})
     train_writer.add_summary(train_summary, i)

     # Every so often, print out how well the graph is training.
     is_last_step = (i + 1 == FLAGS.how_many_training_steps)
     if (i % FLAGS.eval_step_interval) == 0or is_last_step:
       train_accuracy, cross_entropy_value = sess.run(
           [evaluation_step, cross_entropy],
           feed_dict={bottleneck_input: train_bottlenecks,
                      ground_truth_input: train_ground_truth})
       print('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i,
                                                       train_accuracy * 100))
       print('%s: Step %d: Cross entropy = %f' % (datetime.now(), i,
                                                  cross_entropy_value))
       validation_bottlenecks, validation_ground_truth, _ = (
           get_random_cached_bottlenecks(
               sess, image_lists, FLAGS.validation_batch_size, 'validation',
               FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
               bottleneck_tensor))
       # Run a validation step and capture training summaries for TensorBoard# with the `merged` op.
       validation_summary, validation_accuracy = sess.run(
           [merged, evaluation_step],
           feed_dict={bottleneck_input: validation_bottlenecks,
                      ground_truth_input: validation_ground_truth})
       validation_writer.add_summary(validation_summary, i)
       print('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %
             (datetime.now(), i, validation_accuracy * 100,
              len(validation_bottlenecks)))

   # We've completed all our training, so run a final test evaluation on# some new images we haven't used before.
   test_bottlenecks, test_ground_truth, test_filenames = (
       get_random_cached_bottlenecks(sess, image_lists, FLAGS.test_batch_size,
                                     'testing', FLAGS.bottleneck_dir,
                                     FLAGS.image_dir, jpeg_data_tensor,
                                     bottleneck_tensor))
   test_accuracy, predictions = sess.run(
       [evaluation_step, prediction],
       feed_dict={bottleneck_input: test_bottlenecks,
                  ground_truth_input: test_ground_truth})
   print('Final test accuracy = %.1f%% (N=%d)' % (
       test_accuracy * 100, len(test_bottlenecks)))

   if FLAGS.print_misclassified_test_images:
     print('=== MISCLASSIFIED TEST IMAGES ===')
     for i, test_filename in enumerate(test_filenames):
       if predictions[i] != test_ground_truth[i].argmax():
         print('%70s  %s' % (test_filename,
                             list(image_lists.keys())[predictions[i]]))

   # Write out the trained graph and labels with the weights stored as# constants.
   output_graph_def = graph_util.convert_variables_to_constants(
       sess, graph.as_graph_def(), [FLAGS.final_tensor_name])
   with gfile.FastGFile(FLAGS.output_graph, 'wb') as f:
     f.write(output_graph_def.SerializeToString())
   with gfile.FastGFile(FLAGS.output_labels, 'w') as f:
     f.write('\n'.join(image_lists.keys()) + '\n')


if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument(
     '--image_dir',
     type=str,
     default='',
     help='Path to folders of labeled images.'
 )
 parser.add_argument(
     '--output_graph',
     type=str,
     default='/tmp/output_graph.pb',
     help='Where to save the trained graph.'
 )
 parser.add_argument(
     '--output_labels',
     type=str,
     default='/tmp/output_labels.txt',
     help='Where to save the trained graph\'s labels.'
 )
 parser.add_argument(
     '--summaries_dir',
     type=str,
     default='/tmp/retrain_logs',
     help='Where to save summary logs for TensorBoard.'
 )
 parser.add_argument(
     '--how_many_training_steps',
     type=int,
     default=4000,
     help='How many training steps to run before ending.'
 )
 parser.add_argument(
     '--learning_rate',
     type=float,
     default=0.01,
     help='How large a learning rate to use when training.'
 )
 parser.add_argument(
     '--testing_percentage',
     type=int,
     default=10,
     help='What percentage of images to use as a test set.'
 )
 parser.add_argument(
     '--validation_percentage',
     type=int,
     default=10,
     help='What percentage of images to use as a validation set.'
 )
 parser.add_argument(
     '--eval_step_interval',
     type=int,
     default=10,
     help='How often to evaluate the training results.'
 )
 parser.add_argument(
     '--train_batch_size',
     type=int,
     default=100,
     help='How many images to train on at a time.'
 )
 parser.add_argument(
     '--test_batch_size',
     type=int,
     default=-1,
     help="""\
     How many images to test on. This test set is only used once, to evaluate
     the final accuracy of the model after training completes.
     A value of -1 causes the entire test set to be used, which leads to more
     stable results across runs.\
     """

 )
 parser.add_argument(
     '--validation_batch_size',
     type=int,
     default=100,
     help="""\
     How many images to use in an evaluation batch. This validation set is
     used much more often than the test set, and is an early indicator of how
     accurate the model is during training.
     A value of -1 causes the entire validation set to be used, which leads to
     more stable results across training iterations, but may be slower on large
     training sets.\
     """

 )
 parser.add_argument(
     '--print_misclassified_test_images',
     default=False,
     help="""\
     Whether to print out a list of all misclassified test images.\
     """
,
     action='store_true'
 )
 parser.add_argument(
     '--model_dir',
     type=str,
     default='/tmp/imagenet',
     help="""\
     Path to classify_image_graph_def.pb,
     imagenet_synset_to_human_label_map.txt, and
     imagenet_2012_challenge_label_map_proto.pbtxt.\
     """

 )
 parser.add_argument(
     '--bottleneck_dir',
     type=str,
     default='/tmp/bottleneck',
     help='Path to cache bottleneck layer values as files.'
 )
 parser.add_argument(
     '--final_tensor_name',
     type=str,
     default='final_result',
     help="""\
     The name of the output classification layer in the retrained graph.\
     """

 )
 parser.add_argument(
     '--flip_left_right',
     default=False,
     help="""\
     Whether to randomly flip half of the training images horizontally.\
     """
,
     action='store_true'
 )
 parser.add_argument(
     '--random_crop',
     type=int,
     default=0,
     help="""\
     A percentage determining how much of a margin to randomly crop off the
     training images.\
     """

 )
 parser.add_argument(
     '--random_scale',
     type=int,
     default=0,
     help="""\
     A percentage determining how much to randomly scale up the size of the
     training images by.\
     """

 )
 parser.add_argument(
     '--random_brightness',
     type=int,
     default=0,
     help="""\
     A percentage determining how much to randomly multiply the training image
     input pixels up or down by.\
     """

 )
 FLAGS, unparsed = parser.parse_known_args()
 tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

將以上代碼在IDLE中保存在TensorFlow文件夾中命名爲retrain.pyapp

而後打開cmd(mac打開終端)輸入如下命令(不少教程寫了個.bat腳本其實不必)

pythonC:/xxxx/xxxx/xxxx/xxxx/tensorflow/retrain.py--bottleneck_dirC:/xxxx/xxxx/xxxx/xxxx/tensorflow/bottleneck--how_many_training_steps 500 --model_dirC:/xxxx/xxxx/xxxx/xxxx/tensorflow/ --output_graphC:/xxxx/xxxx/xxxx/xxxx/tensorflow/output_graph.pb--output_labelsC:/xxxx/xxxx/xxxx/xxxx/tensorflow/output_labels.txt--image_dirC:/xxxx/xxxx/xxxx/xxxx/tensorflow/data/ --summaries_dirC:/xxxx/xxxx/xxxx/xxxx/tensorflow/summaries/

其中,xxxxx換成你的路徑就能夠了。

其中你惟一可能須要修改的是how_many_training_steps 也就是訓練步數

因爲本文是測試教程所以每一個種類只用了20張圖片 500次已經足夠多了 若是你的訓練集很是大能夠本身調整

其餘的都不用修改

若是你的路徑都沒有問題,按下回車就能夠訓練你的模型

圖片img

能夠看到訓練簡單的貓貓狗狗還剩很輕鬆,正確率100%

而後能夠在cmd中使用如下命令打開tensorboard來查看你的模型,xxxx是你的路徑

tensorboard--logdir=C:/xxxx/xxxx/xxxx/tensorflow/summaries/train

有些同窗不會打開tensorboard:

img

出現這樣的結果以後,瀏覽器打開它給你的地址就好了,能夠看到不少可視化的數據

圖片img

到這裏,訓練樣本的過程就已經成功完成了。若是想測試一些其餘圖片,看看模型能不能成功識別能夠繼續往下看

模型預測

將下面代碼粘貼到IDLE中並保存爲image_pre.py在tensorflow文件夾中,其中你須要將裏面三處的路徑都修改成你的路徑

並在tensorflow文件夾中創建一個文件夾爲pre_image,裏面存放你須要預測的一張或者多張圖片,注意須要圖片格式爲jpg

而後執行就好了

# coding: utf-8import tensorflow as tf
import os
import numpy as np
import re
#from PIL import Imageimport matplotlib.pyplot as plt

lines = tf.gfile.GFile('C:/xxxx/xxxx/xxxx/tensorflow/output_labels.txt').readlines()
uid_to_human = {}
#一行一行讀取數據for uid,line in enumerate(lines) :
   #去掉換行符
   line=line.strip('\n')
   uid_to_human[uid] = line

def id_to_string(node_id):if node_id notin uid_to_human:
       return''return uid_to_human[node_id]

with tf.gfile.FastGFile('C:/xxxx/xxxx/xxxx/tensorflow/output_graph.pb', 'rb') as f:
   graph_def = tf.GraphDef()
   graph_def.ParseFromString(f.read())
   tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
   softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
   #遍歷目錄for root,dirs,files in os.walk('C:/xxxx/xxxx/xxxx/tensorflow/pre_image/'):
       for file in files:
           #載入圖片ifnot file.endswith('.jpg') or file.startswith('.'):
               continue
           image_data = tf.gfile.FastGFile(os.path.join(root,file), 'rb').read()
           predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})#圖片格式是jpg格式
           predictions = np.squeeze(predictions)#把結果轉爲1維數據#打印圖片路徑及名稱
           image_path = os.path.join(root,file)
           print(image_path)
           #顯示圖片#             img=Image.open(image_path)#             plt.imshow(img)#             plt.axis('off')#             plt.show()#排序
           top_k = predictions.argsort()[::-1]
           print(top_k)
           for node_id in top_k:
               #獲取分類名稱
               human_string = id_to_string(node_id)
               #獲取該分類的置信度
               score = predictions[node_id]
               print('%s (score = %.5f)' % (human_string, score))
           print()

獲得預測結果以下:

圖片img

能夠看到模型仍是很是準的。

到這裏整個遷移學習就搞定了,是否是很簡單

添加一個圖片轉jpg的python代碼:

須要安裝opencv,將xxxx改爲你的路徑就能夠

import os
import cv2
import sys
import numpy as np

path = "C:/xxxx/xxxx/xxxx/tensorflow/pre_image/"
print(path)

for filename in os.listdir(path):
   if os.path.splitext(filename)[1] == '.png':
       # print(filename)
       img = cv2.imread(path + filename)
       print(filename.replace(".png", ".jpg"))
       newfilename = filename.replace(".png", ".jpg")
       # cv2.imshow("Image",img)# cv2.waitKey(0)        cv2.imwrite(path + newfilename, img)
相關文章
相關標籤/搜索