關於K-Means介紹不少,還不清楚能夠查一些相關資料。java
我的對其實現步驟簡單總結爲4步:git
1.選出k值,隨機出k個起始質心點。
2.分別計算每一個點和k個起始質點之間的距離,就近歸類。
3.最終中心點集能夠劃分爲k類,分別計算每類中新的中心點。
github
4.重複2,3步驟對全部點進行歸類,若是當全部分類的質心點再也不改變,則最終收斂。dom
下面貼代碼。ide
1.入口類,基本讀取數據源進行訓練而後輸出。 數據源文件和源碼後面會補上。函數
package com.hyr.kmeans; import au.com.bytecode.opencsv.CSVReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.ArrayList; import java.util.List; public class KmeansMain { public static void main(String[] args) throws IOException { // 讀取數據源文件 CSVReader reader = new CSVReader(new FileReader("src/main/resources/data.csv")); // 數據源 FileWriter writer = new FileWriter("src/main/resources/out.csv"); List<String[]> myEntries = reader.readAll(); // 6.8, 12.6 // 轉換數據點集 List<Point> points = new ArrayList<Point>(); // 數據點集 for (String[] entry : myEntries) { points.add(new Point(Float.parseFloat(entry[0]), Float.parseFloat(entry[1]))); } int k = 6; // K值 int type = 1; KmeansModel model = Kmeans.run(points, k, type); writer.write("==================== K is " + model.getK() + " , Object Funcion Value is " + model.getOfv() + " , calc_distance_type is " + model.getCalc_distance_type() + " ====================\n"); int i = 0; for (Cluster cluster : model.getClusters()) { i++; writer.write("==================== classification " + i + " ====================\n"); for (Point point : cluster.getPoints()) { writer.write(point.toString() + "\n"); } writer.write("\n"); writer.write("centroid is " + cluster.getCentroid().toString()); writer.write("\n\n"); } writer.close(); } }
2.最終生成的模型類,也就是最終訓練好的結果。K值,計算的點距離類型以及object function value值。this
package com.hyr.kmeans; import java.util.ArrayList; import java.util.List; public class KmeansModel { private List<Cluster> clusters = new ArrayList<Cluster>(); private Double ofv; private int k; // k值 private int calc_distance_type; public KmeansModel(List<Cluster> clusters, Double ofv, int k, int calc_distance_type) { this.clusters = clusters; this.ofv = ofv; this.k = k; this.calc_distance_type = calc_distance_type; } public List<Cluster> getClusters() { return clusters; } public Double getOfv() { return ofv; } public int getK() { return k; } public int getCalc_distance_type() { return calc_distance_type; } }
3.數據集點對象,包含點的維度,代碼裏只給出了x軸,y軸二維。以及點的距離計算。經過類型選擇距離公式。給出了幾種經常使用的距離公式。.net
package com.hyr.kmeans; public class Point { private Float x; // x 軸 private Float y; // y 軸 public Point(Float x, Float y) { this.x = x; this.y = y; } public Float getX() { return x; } public void setX(Float x) { this.x = x; } public Float getY() { return y; } public void setY(Float y) { this.y = y; } @Override public String toString() { return "Point{" + "x=" + x + ", y=" + y + '}'; } /** * 計算距離 * * @param centroid 質心點 * @param type * @return */ public Double calculateDistance(Point centroid, int type) { // TODO Double result = null; switch (type) { case 1: result = calcL1Distance(centroid); break; case 2: result = calcCanberraDistance(centroid); break; case 3: result = calcEuclidianDistance(centroid); break; } return result; } /* 計算距離公式 */ private Double calcL1Distance(Point centroid) { double res = 0; res = Math.abs(getX() - centroid.getX()) + Math.abs(getY() - centroid.getY()); return res / (double) 2; } private double calcEuclidianDistance(Point centroid) { return Math.sqrt(Math.pow((centroid.getX() - getX()), 2) + Math.pow((centroid.getY() - getY()), 2)); } private double calcCanberraDistance(Point centroid) { double res = 0; res = Math.abs(getX() - centroid.getX()) / (Math.abs(getX()) + Math.abs(centroid.getX())) + Math.abs(getY() - centroid.getY()) / (Math.abs(getY()) + Math.abs(centroid.getY())); return res / (double) 2; } @Override public boolean equals(Object obj) { Point other = (Point) obj; if (getX().equals(other.getX()) && getY().equals(other.getY())) { return true; } return false; } }
4.訓練後最終獲得的分類。包含該分類的質點,屬於該分類的點集合該分類是否收斂。code
package com.hyr.kmeans; import java.util.ArrayList; import java.util.List; public class Cluster { private List<Point> points = new ArrayList<Point>(); // 屬於該分類的點集 private Point centroid; // 該分類的中心質點 private boolean isConvergence = false; public Point getCentroid() { return centroid; } public void setCentroid(Point centroid) { this.centroid = centroid; } @Override public String toString() { return centroid.toString(); } public List<Point> getPoints() { return points; } public void setPoints(List<Point> points) { this.points = points; } public void initPoint() { points.clear(); } public boolean isConvergence() { return isConvergence; } public void setConvergence(boolean convergence) { isConvergence = convergence; } }
5.K-Meams訓練類。按照上面所說四個步驟不斷進行訓練。對象
package com.hyr.kmeans; import java.util.ArrayList; import java.util.List; import java.util.Random; public class Kmeans { /** * kmeans * * @param points 數據集 * @param k K值 * @param k 計算距離方式 */ public static KmeansModel run(List<Point> points, int k, int type) { // 初始化質心點 List<Cluster> clusters = initCentroides(points, k); while (!checkConvergence(clusters)) { // 全部分類是否所有收斂 // 1.計算距離對每一個點進行分類 // 2.判斷質心點是否改變,未改變則該分類已經收斂 // 3.從新生成質心點 initClusters(clusters); // 重置分類中的點 classifyPoint(points, clusters, type);// 計算距離進行分類 recalcularCentroides(clusters); // 從新計算質心點 } // 計算目標函數值 Double ofv = calcularObjetiFuncionValue(clusters); KmeansModel kmeansModel = new KmeansModel(clusters, ofv, k, type); return kmeansModel; } /** * 初始化k個質心點 * * @param points 點集 * @param k K值 * @return 分類集合對象 */ private static List<Cluster> initCentroides(List<Point> points, Integer k) { List<Cluster> centroides = new ArrayList<Cluster>(); // 求出數據集的範圍(找出全部點的x最小、最大和y最小、最大座標。) Float max_X = Float.NEGATIVE_INFINITY; Float max_Y = Float.NEGATIVE_INFINITY; Float min_X = Float.POSITIVE_INFINITY; Float min_Y = Float.POSITIVE_INFINITY; for (Point point : points) { max_X = max_X < point.getX() ? point.getX() : max_X; max_Y = max_Y < point.getY() ? point.getY() : max_Y; min_X = min_X > point.getX() ? point.getX() : min_X; min_Y = min_Y > point.getY() ? point.getY() : min_Y; } System.out.println("min_X" + min_X + ",max_X:" + max_X + ",min_Y" + min_Y + ",max_Y" + max_Y); // 在範圍內隨機初始化k個質心點 Random random = new Random(); // 隨機初始化k箇中心點 for (int i = 0; i < k; i++) { float x = random.nextFloat() * (max_X - min_X) + min_X; float y = random.nextFloat() * (max_Y - min_Y) + min_X; Cluster c = new Cluster(); Point centroide = new Point(x, y); // 初始化的隨機中心點 c.setCentroid(centroide); centroides.add(c); } return centroides; } /** * 從新計算質心點 * * @param clusters */ private static void recalcularCentroides(List<Cluster> clusters) { for (Cluster c : clusters) { if (c.getPoints().isEmpty()) { c.setConvergence(true); continue; } // 求均值,做爲新的質心點 Float x; Float y; Float sum_x = 0f; Float sum_y = 0f; for (Point point : c.getPoints()) { sum_x += point.getX(); sum_y += point.getY(); } x = sum_x / c.getPoints().size(); y = sum_y / c.getPoints().size(); Point nuevoCentroide = new Point(x, y); // 新的質心點 if (nuevoCentroide.equals(c.getCentroid())) { // 若是質心點再也不改變 則該分類已經收斂 c.setConvergence(true); } else { c.setCentroid(nuevoCentroide); } } } /** * 計算距離,對點集進行分類 * * @param points 點集 * @param clusters 分類 * @param type 計算距離方式 */ private static void classifyPoint(List<Point> points, List<Cluster> clusters, int type) { for (Point point : points) { Cluster masCercano = clusters.get(0); // 該點計算距離後所屬的分類 Double minDistancia = Double.MAX_VALUE; // 最小距離 for (Cluster cluster : clusters) { Double distancia = point.calculateDistance(cluster.getCentroid(), type); // 點和每一個分類質心點的距離 if (minDistancia > distancia) { // 獲得該點和k個質心點最小的距離 minDistancia = distancia; masCercano = cluster; // 獲得該點的分類 } } masCercano.getPoints().add(point); // 將該點添加到距離最近的分類中 } } private static void initClusters(List<Cluster> clusters) { for (Cluster cluster : clusters) { cluster.initPoint(); } } /** * 檢查收斂 * * @param clusters * @return */ private static boolean checkConvergence(List<Cluster> clusters) { for (Cluster cluster : clusters) { if (!cluster.isConvergence()) { return false; } } return true; } /** * 計算目標函數值 * * @param clusters * @return */ private static Double calcularObjetiFuncionValue(List<Cluster> clusters) { Double ofv = 0d; for (Cluster cluster : clusters) { for (Point point : cluster.getPoints()) { int type = 1; ofv += point.calculateDistance(cluster.getCentroid(), type); } } return ofv; } }
最終訓練結果:
==================== K is 6 , Object Funcion Value is 21.82857036590576 , calc_distance_type is 3 ==================== ==================== classification 1 ==================== Point{x=3.5, y=12.5} centroid is Point{x=3.5, y=12.5} ==================== classification 2 ==================== Point{x=6.8, y=12.6} Point{x=7.8, y=12.2} Point{x=8.2, y=11.1} Point{x=9.6, y=11.1} centroid is Point{x=8.1, y=11.75} ==================== classification 3 ==================== Point{x=4.4, y=6.5} Point{x=4.8, y=1.1} Point{x=5.3, y=6.4} Point{x=6.6, y=7.7} Point{x=8.2, y=4.5} Point{x=8.4, y=6.9} Point{x=9.0, y=3.4} centroid is Point{x=6.671428, y=5.2142863} ==================== classification 4 ==================== Point{x=6.0, y=19.9} Point{x=6.2, y=18.5} Point{x=5.3, y=19.4} Point{x=7.6, y=17.4} centroid is Point{x=6.275, y=18.800001} ==================== classification 5 ==================== Point{x=0.8, y=9.8} Point{x=1.2, y=11.6} Point{x=2.8, y=9.6} Point{x=3.8, y=9.9} centroid is Point{x=2.15, y=10.225} ==================== classification 6 ==================== Point{x=6.1, y=14.3} centroid is Point{x=6.1, y=14.3}
代碼下載地址:
http://download.csdn.net/download/huangyueranbbc/10267041
github:
https://github.com/huangyueranbbc/KmeansDemo