大型網站架構系列:分佈式消息隊列(一)

如下是消息隊列如下的大綱,本文主要介紹消息隊列概述,消息隊列應用場景和消息中間件示例(電商,日誌系統)。html

本次分享大綱

  1. 消息隊列概述
  2. 消息隊列應用場景
  3. 消息中間件示例
  4. JMS消息服務(見第二篇:大型網站架構系列:分佈式消息隊列(二)
  5. 經常使用消息隊列(見第二篇:大型網站架構系列:分佈式消息隊列(二)
  6. 參考(推薦)資料(見第二篇:大型網站架構系列:分佈式消息隊列(二)
  7. 本次分享總結(見第二篇:大型網站架構系列:分佈式消息隊列(二)

1、消息隊列概述

消息隊列中間件是分佈式系統中重要的組件,主要解決應用耦合,異步消息,流量削鋒等問題。實現高性能,高可用,可伸縮和最終一致性架構。是大型分佈式系統不可缺乏的中間件。前端

目前在生產環境,使用較多的消息隊列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。數據庫

2、消息隊列應用場景

如下介紹消息隊列在實際應用中經常使用的使用場景。異步處理,應用解耦,流量削鋒和消息通信四個場景。服務器

2.1異步處理

場景說明:用戶註冊後,須要發註冊郵件和註冊短信。傳統的作法有兩種1.串行的方式;2.並行方式。網絡

(1)串行方式:將註冊信息寫入數據庫成功後,發送註冊郵件,再發送註冊短信。以上三個任務所有完成後,返回給客戶端。(架構KKQ:466097527,歡迎加入)架構

 

(2)並行方式:將註冊信息寫入數據庫成功後,發送註冊郵件的同時,發送註冊短信。以上三個任務完成後,返回給客戶端。與串行的差異是,並行的方式能夠提升處理的時間。併發

 

假設三個業務節點每一個使用50毫秒鐘,不考慮網絡等其餘開銷,則串行方式的時間是150毫秒,並行的時間多是100毫秒。負載均衡

由於CPU在單位時間內處理的請求數是必定的,假設CPU1秒內吞吐量是100次。則串行方式1秒內CPU可處理的請求量是7次(1000/150)。並行方式處理的請求量是10次(1000/100)。less

 

小結:如以上案例描述,傳統的方式系統的性能(併發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?異步

引入消息隊列,將不是必須的業務邏輯,異步處理。改造後的架構以下:

 

按照以上約定,用戶的響應時間至關因而註冊信息寫入數據庫的時間,也就是50毫秒。註冊郵件,發送短信寫入消息隊列後,直接返回,所以寫入消息隊列的速度很快,基本能夠忽略,所以用戶的響應時間多是50毫秒。所以架構改變後,系統的吞吐量提升到每秒20 QPS。比串行提升了3倍,比並行提升了兩倍。

2.2應用解耦

場景說明:用戶下單後,訂單系統須要通知庫存系統。傳統的作法是,訂單系統調用庫存系統的接口。以下圖:(架構KKQ:466097527,歡迎加入)

 

傳統模式的缺點:

1)  假如庫存系統沒法訪問,則訂單減庫存將失敗,從而致使訂單失敗;

2)  訂單系統與庫存系統耦合;

如何解決以上問題呢?引入應用消息隊列後的方案,以下圖:

 

  • 訂單系統:用戶下單後,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功。
  • 庫存系統:訂閱下單的消息,採用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操做。
  • 假如:在下單時庫存系統不能正常使用。也不影響正常下單,由於下單後,訂單系統寫入消息隊列就再也不關心其餘的後續操做了。實現訂單系統與庫存系統的應用解耦。

2.3流量削鋒

流量削鋒也是消息隊列中的經常使用場景,通常在秒殺或團搶活動中使用普遍。

應用場景:秒殺活動,通常會由於流量過大,致使流量暴增,應用掛掉。爲解決這個問題,通常須要在應用前端加入消息隊列。

  1. 能夠控制活動的人數;
  2. 能夠緩解短期內高流量壓垮應用;

 

  1. 用戶的請求,服務器接收後,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面;
  2. 秒殺業務根據消息隊列中的請求信息,再作後續處理。

2.4日誌處理

日誌處理是指將消息隊列用在日誌處理中,好比Kafka的應用,解決大量日誌傳輸的問題。架構簡化以下:(架構KKQ:466097527,歡迎加入)

 

  • 日誌採集客戶端,負責日誌數據採集,定時寫受寫入Kafka隊列;
  • Kafka消息隊列,負責日誌數據的接收,存儲和轉發;
  • 日誌處理應用:訂閱並消費kafka隊列中的日誌數據;

如下是新浪kafka日誌處理應用案例:

轉自(http://cloud.51cto.com/art/201507/484338.htm)

 

(1)Kafka:接收用戶日誌的消息隊列。

(2)Logstash:作日誌解析,統一成JSON輸出給Elasticsearch。

(3)Elasticsearch:實時日誌分析服務的核心技術,一個schemaless,實時的數據存儲服務,經過index組織數據,兼具強大的搜索和統計功能。

(4)Kibana:基於Elasticsearch的數據可視化組件,超強的數據可視化能力是衆多公司選擇ELK stack的重要緣由。

2.5消息通信

消息通信是指,消息隊列通常都內置了高效的通訊機制,所以也能夠用在純的消息通信。好比實現點對點消息隊列,或者聊天室等。

點對點通信:

 

客戶端A和客戶端B使用同一隊列,進行消息通信。

聊天室通信:

 

客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發佈和接收。實現相似聊天室效果。

以上實際是消息隊列的兩種消息模式,點對點或發佈訂閱模式。模型爲示意圖,供參考。

3、消息中間件示例

3.1電商系統

 

消息隊列採用高可用,可持久化的消息中間件。好比Active MQ,Rabbit MQ,Rocket Mq。(1)應用將主幹邏輯處理完成後,寫入消息隊列。消息發送是否成功能夠開啓消息的確認模式。(消息隊列返回消息接收成功狀態後,應用再返回,這樣保障消息的完整性)

(2)擴展流程(發短信,配送處理)訂閱隊列消息。採用推或拉的方式獲取消息並處理。

(3)消息將應用解耦的同時,帶來了數據一致性問題,能夠採用最終一致性方式解決。好比主數據寫入數據庫,擴展應用根據消息隊列,並結合數據庫方式實現基於消息隊列的後續處理。

3.2日誌收集系統

 

分爲Zookeeper註冊中心,日誌收集客戶端,Kafka集羣和Storm集羣(OtherApp)四部分組成。

  • Zookeeper註冊中心,提出負載均衡和地址查找服務;
  • 日誌收集客戶端,用於採集應用系統的日誌,並將數據推送到kafka隊列;
  • Kafka集羣:接收,路由,存儲,轉發等消息處理;

Storm集羣:與OtherApp處於同一級別,採用拉的方式消費隊列中的數據;

相關文章
相關標籤/搜索