1. 建表語句結構 sql
create table if not exists employees ( name string, salary float, subordinates array<string>, deductions map<string, float>, address struct<street:string, city:string, state:string, zip:int> ) row format delimited fields terminated by '\001' collection items terminated by '\002' map keys terminated by '\003' lines terminated by '\n' stored as textfile;
2. 表裏 name 和 subordinates 的數據結構數據結構
3. 使用 lateral view 和 explode 查詢oop
select name,subordinate from employees lateral view explode(subordinates) subordinates_table as subordinate;
總結: explode就是將hive一行中複雜的 array 或者 map 結構拆分紅多行。code
下面就作個小例子, 建立 hive 表 doc, 表裏只有一列 text 類型爲 string, 將 hadoop 目錄下的 README.txt 導入該表, 並寫出 sql 求出 wordcountorm
create table if not exists doc(text string) row format delimited lines terminated by '\n'; load data local inpath '/opt/hadoop-2.7.4/README.txt' overwrite into table doc; select word, count(*) from doc lateral view explode(split(text,' ')) ITable as word group by word;