poj 3176 -- Cow Bowling

Cow Bowling
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13931   Accepted: 9230

Descriptionios

The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

          7


3 8

8 1 0

2 7 4 4

4 5 2 6 5
Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

Inputide

Line 1: A single integer, N 

Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

Outputthis

Line 1: The largest sum achievable using the traversal rules

Sample Inputspa

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

Sample Outputcode

30

題目連接:Cow Bowling

思路:簡單dp,白皮書入門dp。

 1 /*======================================================================
 2  *           Author :   kevin
 3  *         Filename :   CowBowing.cpp
 4  *       Creat time :   2014-09-18 10:59
 5  *      Description :
 6 ========================================================================*/
 7 #include <iostream>
 8 #include <algorithm>
 9 #include <cstdio>
10 #include <cstring>
11 #include <queue>
12 #include <cmath>
13 #define clr(a,b) memset(a,b,sizeof(a))
14 #define M 400
15 using namespace std;
16 int s[M][M],dp[M][M];
17 int main(int argc,char *argv[])
18 {
19     int n;
20     while(scanf("%d",&n)!=EOF){
21         clr(dp,0);
22         clr(s,0);
23         for(int i = 1; i <= n; i++){
24             for(int j = 1; j <= i; j++){
25                 scanf("%d",&s[i][j]);
26             }
27         }
28         for(int i = 1; i <= n; i++){
29             dp[n][i] = s[n][i];
30         }
31         for(int i = n-1; i >= 1; i--){
32             for(int j = 1; j <= i; j++){
33                 dp[i][j] = max(s[i][j] + dp[i+1][j],s[i][j] + dp[i+1][j+1]);
34             }
35         }
36         printf("%d\n",dp[1][1]);
37     }
38     return 0;
39 }
View Code
相關文章
相關標籤/搜索