JavaShuo
欄目
標籤
數學分析筆記13:高維歐式空間與多元連續函數
時間 2020-06-05
標籤
html
web
數組
閉包
app
ide
svg
函數
spa
orm
欄目
應用數學
简体版
原文
原文鏈接
高維歐式空間的拓撲結構 n維歐式空間上的範數與距離 從本節開始,咱們從一元微積分部分進入多元微積分部分。一元微積分的研究對象是實數域及實數域上的函數。多元微積分就創建在n維歐式空間上,研究n維歐式空間上多元函數。一樣地,咱們要把極限、連續性、可微性和積分推廣到高維空間上,那麼,應當如何推廣呢? 實際上,在一維空間上,極限定義爲 ∣ x n − x 0 ∣ → 0 |x_n-x_0|\to 0 ∣x
>>阅读原文<<
相關文章
1.
數學分析 多元函數的極限和連續性
2.
數學分析筆記14:多元函數微分學
3.
數學分析 - 函數的連續性
4.
數學分析 函數的連續性
5.
高等代數筆記6:歐式空間
6.
數學分析筆記4:一元函數微分學
7.
學習筆記—四元數與歐拉角之間的轉換
8.
學習筆記 | 分析連續數據的數學
9.
數學分析筆記15:多元函數微分學的應用
10.
【數學】多元函數微分學(宇哥筆記)
更多相關文章...
•
C# 多維數組
-
C#教程
•
PHP 多維數組
-
PHP教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
連續函數
數學函數
高維空間
歐拉函數
數學分析
解析函數
高階函數
函數式 Swift
代數函數
指數函數
Java
應用數學
HTML
Redis教程
NoSQL教程
MyBatis教程
數據傳輸
數據庫
數據業務
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Appium入門
2.
Spring WebFlux 源碼分析(2)-Netty 服務器啓動服務流程 --TBD
3.
wxpython入門第六步(高級組件)
4.
CentOS7.5安裝SVN和可視化管理工具iF.SVNAdmin
5.
jedis 3.0.1中JedisPoolConfig對象缺少setMaxIdle、setMaxWaitMillis等方法,問題記錄
6.
一步一圖一代碼,一定要讓你真正徹底明白紅黑樹
7.
2018-04-12—(重點)源碼角度分析Handler運行原理
8.
Spring AOP源碼詳細解析
9.
Spring Cloud(1)
10.
python簡單爬去油價信息發送到公衆號
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
數學分析 多元函數的極限和連續性
2.
數學分析筆記14:多元函數微分學
3.
數學分析 - 函數的連續性
4.
數學分析 函數的連續性
5.
高等代數筆記6:歐式空間
6.
數學分析筆記4:一元函數微分學
7.
學習筆記—四元數與歐拉角之間的轉換
8.
學習筆記 | 分析連續數據的數學
9.
數學分析筆記15:多元函數微分學的應用
10.
【數學】多元函數微分學(宇哥筆記)
>>更多相關文章<<