數學分析筆記14:多元函數微分學

偏導數與全微分

偏導數與全微分的概念

如今,咱們把導數和微分的概念,推廣到多元函數的情形。只不過,在二維以上,函數的方向十分複雜,毫不只有左導數和右導數兩個方向。然而,咱們能夠先對某個變元求導數,稱爲偏導數。html

定義14.1(偏導數) f ( x 1 , x 2 , , x n ) f(x_1,x_2,\cdots,x_n) ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 的某個鄰域上有定義,若是對第 i ( 1 i n ) i(1\le i \le n) 的變元,極限
lim Δ x i 0 f ( x 1 0 , , x i 1 0 , x i , x i + 1 0 , , x n 0 ) f ( x 1 0 , , x n 0 ) Δ x i \lim_{\Delta x_i\to 0}{\frac{f(x_1^0,\cdots,x_{i-1}^0,x_i,x_{i+1}^0,\cdots,x_n^0)-f(x_1^0,\cdots,x_n^0)}{\Delta x_i}} 存在,稱該極限爲 f ( x 1 , , x n ) f(x_1,\cdots,x_n) ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處對 x i x_i 的偏導數,\記爲 f ( x 1 0 , , x n 0 ) x i \frac{\partial f(x_1^0,\cdots,x_n^0)}{\partial x_i} f i ( x 1 0 , , x n 0 ) f_i(x_1^0,\cdots,x_n^0)
web

若是 f ( x 1 , , x n ) f(x_1,\cdots,x_n) 在某個開集 E E 上每一個點對全部變元的偏導數都存在,那麼,對各個變元的偏導數,都是這個開集上的一個 n n 元函數,一樣能夠討論極限、連續性的等概念。
咱們再一元函數上還有微分的概念,在一元函數上,全微分定義成某點的"切線",在二元函數上,全微分就應該是某點的切平面,在三維以上,就是切「超平面」,只不過,這時咱們沒有幾何直觀能夠參考。
一維上的直線能夠表爲 y = a + b x y=a+bx
二維上的平面可表爲 y = a + b 1 x + b 2 x y=a+b_1x+b_2x
推廣到 n n 維上,超平面可表爲 y = a + k = 1 n b k x k y=a+\sum_{k=1}^{n}{b_kx_k}
所謂全微分,就是在函數在某點附近,能夠用一個超平面近似,即:
f ( x ) = f ( x 0 ) + k = 1 n b k Δ x k + o ( Δ x ) f(x)=f(x_0)+\sum_{k=1}^n{b_k\Delta x_k}+o(||\Delta x||) 算法

定義14.2(全微分) f ( x 1 , , x n ) f(x_1,\cdots,x_n) x 0 = ( x 1 0 , , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) 的某個鄰域上有定義,若是 f ( x 1 , , x n ) f(x_1,\cdots,x_n) 可表爲
f ( x 1 , , x n ) = f ( x 1 0 , , x n 0 ) + k = 1 n A k ( x k x k 0 ) + o ( x x 0 ) f(x_1,\cdots,x_n)=f(x_1^0,\cdots,x_n^0)+\sum_{k=1}^n{A_k(x_k-x_k^0)}+ o(||x-x_0||) 其中 A 1 , , A n A_1,\cdots,A_n Δ x = x x 0 \Delta x = x-x_0 無關,則稱 f ( x ) f(x) x 0 x_0 處可微,超平面 k = 1 n A k d x k \sum_{k=1}^n{A_kdx_k} 稱爲 f ( x ) f(x) x 0 x_0 處的全微分,記爲 d f = k = 1 n A k d x k df = \sum_{k=1}^n{A_kdx_k}
數組

定理14.1(可微的必要條件) f ( x 1 , , x n ) f(x_1,\cdots,x_n) x 0 = ( x 1 0 , , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) 的某個鄰域上有定義, f ( x 1 , , x n ) f(x_1,\cdots,x_n) x 0 = ( x 1 0 , , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) 上可微,則 f f x 0 = ( x 1 0 , , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) 對各變元可求偏導,而且:
d f = k = 1 n f k ( x 1 0 , , x n 0 ) d x k df = \sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)dx_k}
app

這由全微分的定義能夠直接驗證。其次,容易驗證可微必連續。但就算n元函數在某點對各變元可求偏導且連續,也不必定可微。ide

例14.1 f ( x , y ) = { x y x 2 + y 2 x 2 + y 2 > 0 0 x = 0 , y = 0 f(x,y)= \begin{cases} \frac{xy}{\sqrt{x^2+y^2}}&x^2+y^2>0\\ 0&x=0,y=0 \end{cases} f ( x , y ) f(x,y) ( 0 , 0 ) (0,0) 處連續且對各變元可求偏導,然而: lim ( x , y ) ( 0 , 0 ) f ( x , y ) x 2 + y 2 = lim ( x , y ) ( 0 , 0 ) x y x 2 + y 2 \lim_{(x,y)\to(0,0)}{\frac{f(x,y)}{\sqrt{x^2+y^2}}} =\lim_{(x,y)\to(0,0)}{\frac{xy}{x^2+y^2}} 極限不存在,所以, f ( x , y ) f(x,y) ( 0 , 0 ) (0,0) 點不可微svg

那麼,知足何種條件可以可微呢?下面咱們給出一個充分條件:函數

定理14.2(可微的充分條件) f ( x 1 , , x n ) f(x_1,\cdots,x_n) x 0 = ( x 1 0 , , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) 的某個鄰域上有定義且對各變元可求偏導,而且各偏導在 x 0 x_0 處連續,則 f ( x 1 , , x n ) f(x_1,\cdots,x_n) x 0 x_0 處可微spa

證:
f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) = f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) + k = 1 n 1 ( f ( x 1 0 , , x k 0 , x k + 1 , , x n ) + f ( x 1 0 , , x k 0 , x k + 1 , , x n ) ) = k = 1 n [ f ( x 1 0 , , x k 1 0 , x k , x k + 1 , , x n ) f ( x 1 0 , , x k 0 , x k + 1 , , x n ) ] f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0) =f(x_1,\cdots,x_n)-\\f(x_1^0,\cdots,x_n^0)+\sum_{k=1}^{n-1}{( -f(x_1^0,\cdots,x_k^0,x_{k+1},\cdots,x_n) +f(x_1^0,\cdots,x_k^0,x_{k+1},\cdots,x_n))}\\ =\sum_{k=1}^n{[f(x_1^0,\cdots,x_{k-1}^0,x_k,x_{k+1},\cdots,x_n) -f(x_1^0,\cdots,x_k^0,x_{k+1},\cdots,x_n)]} 由拉格朗日中值定理,存在 ξ k \xi_k 介於 x k x_k x k 0 x_k^0 之間 f ( x 1 , , x n ) = f ( x 1 0 , , x n 0 ) + k = 1 n f k ( x 1 0 , , x k 1 0 , ξ k , x k + 1 , , x n ) Δ x k = k = 1 n f k ( x 1 0 , , x n 0 ) Δ x k + k = 1 n [ f k ( x 1 0 , , x k 1 0 , ξ k , x k + 1 , , x n ) f k ( x 1 0 , , x n 0 ) ] Δ x k f(x_1,\cdots,x_n)=f(x_1^0,\cdots,x_n^0) +\sum_{k=1}^n{f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)\Delta x_k}\\ =\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k} +\sum_{k=1}^n[f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)-f_k(x_1^0,\cdots,x_n^0)]\Delta x_k 考察餘項: f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) k = 1 n f k ( x 1 0 , , x n 0 ) Δ x k k = 1 n Δ 2 x k = k = 1 n [ f k ( x 1 0 , , x k 1 0 , ξ k , x k + 1 , , x n ) f k ( x 1 0 , , x n 0 ) ] Δ x k i = 1 n Δ 2 x i \frac{f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)-\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k}}{\sqrt{\sum_{k=1}^n{\Delta^2 x_k}}}\\ =\sum_{k=1}^n[f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)-f_k(x_1^0,\cdots,x_n^0)]\frac{\Delta x_k}{\sqrt{\sum_{i=1}^n\Delta^2 x_i}} Δ x k i = 1 n Δ 2 x i 1 |\frac{\Delta x_k}{\sqrt{\sum_{i=1}^n\Delta^2 x_i}}|\le 1 所以: f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) k = 1 n f k ( x 1 0 , , x n 0 ) Δ x k k = 1 n Δ 2 x k k = 1 n f k ( x 1 0 , , x k 1 0 , ξ k , x k + 1 , , x n ) f k ( x 1 0 , , x n 0 ) |\frac{f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)-\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k}}{\sqrt{\sum_{k=1}^n{\Delta^2 x_k}}}|\\ \le \sum_{k=1}^n|f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)-f_k(x_1^0,\cdots,x_n^0)| 再由偏導數的連續性,就有 lim ( x 1 , , x n ) ( x 1 0 , , x n 0 ) f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) k = 1 n f k ( x 1 0 , , x n 0 ) Δ x k k = 1 n Δ 2 x k = 0 \lim_{(x_1,\cdots,x_n)\to(x_1^0,\cdots,x_n^0)}{|\frac{f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)-\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k}}{\sqrt{\sum_{k=1}^n{\Delta^2 x_k}}}|}=0 所以, f ( x 1 , , x n ) f(x_1,\cdots,x_n) ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微orm

咱們把偏導數連續稱爲連續可微。這樣,可微、可導和連續性的關係能夠歸納爲:
(1)連續可微必定可微
(2)可微必定可求偏導數
(3)可微必定連續
(4)連續不必定可求偏導
(5)可求偏導不必定可微

多元函數微分法則

爲了給出多元情形下的求導和微分法則,咱們首先給出向量值函數的全微分概念

定義14.3 g ( x 1 , x 2 , , x n ) = ( g 1 ( x 1 , , x n ) , , g m ( x 1 , , x n ) ) g(x_1,x_2,\cdots,x_n)=(g_1(x_1,\cdots,x_n),\cdots,g_m(x_1,\cdots,x_n)) n n m m 維向量值函數,在 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 附近有定義,若是存在與 ( x 1 , , x n ) (x_1,\cdots,x_n) 無關,僅與 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 有關的 m m n n 列矩陣 A A ,記 Δ x = ( x 1 x 1 0 , , x n x n 0 ) T \Delta x = (x_1-x_1^0,\cdots,x_n-x_n^0)^T ,使得 [ g 1 ( x 1 , , x n ) g 1 ( x 1 0 , , x n 0 ) g m ( x 1 , , x n ) g m ( x 1 0 , , x n 0 ) ] = A Δ x + [ o 1 ( Δ x ) o m ( Δ x ) ] \left[\begin{matrix} g_1(x_1,\cdots,x_n)-g_1(x_1^0,\cdots,x_n^0)\\ \cdots\\ g_m(x_1,\cdots,x_n)-g_m(x_1^0,\cdots,x_n^0) \end{matrix}\right] =A\Delta x + \left[ \begin{matrix} o_1(||\Delta x||)\\ \cdots\\ o_m(||\Delta x||) \end{matrix} \right] 則稱向量值函數 g g ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,矩陣 A A 稱爲 g g ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處的Frechet導數。 A d x Adx 稱爲 g g ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處的全微分。

實際上,由定義容易得出,若是向量值函數在 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微的充要條件是每一個份量函數都在 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,而且,Frechet導數就等於:
[ g 1 ( x 1 0 , , x n 0 ) x 1 g 1 ( x 1 0 , , x n 0 ) x n g m ( x 1 0 , , x n 0 ) x 1 g m ( x 1 0 , , x n 0 ) x n ] \left[\begin{matrix} \frac{\partial g_1(x_1^0,\cdots,x_n^0)}{\partial x_1}&\cdots&\frac{\partial g_1(x_1^0,\cdots,x_n^0)}{\partial x_n}\\ \cdots&\cdots&\cdots\\ \frac{\partial g_m(x_1^0,\cdots,x_n^0)}{\partial x_1}&\cdots&\frac{\partial g_m(x_1^0,\cdots,x_n^0)}{\partial x_n} \end{matrix}\right] 爲了方便,咱們把Frechet導數記爲 g ( x 0 ) g^\prime(x_0) ,對 n n 元函數來講,Frechet導數就是 n n 維的行向量。實際上,Frechet導數就是一元導數的的一個推廣,Frechet可導就等價於可微,在這層意義下,可微和可導是等價的。

定理14.3(線性性質) g 1 , g 2 g_1,g_2 n n m m 維向量值函數而且都在 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,則
(1) g 1 + g 2 g_1+g_2 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,而且
g 1 ( x 1 0 , , x n 0 ) + g 2 ( x 1 0 , , x n 0 ) = ( g 1 + g 2 ) ( x 1 0 , , x n 0 ) g_1^\prime(x_1^0,\cdots,x_n^0)+g_2^\prime(x_1^0,\cdots,x_n^0) =(g_1+g_2)^\prime(x_1^0,\cdots,x_n^0) (2) c c 是任意實數, c g 1 cg_1 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,而且
c g 1 ( x 1 0 , , x n 0 ) = ( c g 1 ) ( x 1 0 , , x n 0 ) cg_1^\prime(x_1^0,\cdots,x_n^0) = (cg_1)^\prime(x_1^0,\cdots,x_n^0)

這兩個性質按照Frechet導數的定義是顯然的。

定理14.4 g g n n m m 維向量值函數,而且在 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微, f f n n 元函數,而且在 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,則 F = g ( x 1 , , x n ) f ( x 1 , , x n ) F=g(x_1,\cdots,x_n)f(x_1,\cdots,x_n) ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,而且
F ( x 1 0 , , x n 0 ) = g ( x 1 0 , , x n 0 ) f ( x 1 0 , , x n 0 ) + g ( x 1 0 , , x n 0 ) f ( x 1 0 , , x n 0 ) F^\prime(x_1^0,\cdots,x_n^0)=g(x_1^0,\cdots,x_n^0)f^\prime(x_1^0,\cdots,x_n^0) +g^\prime(x_1^0,\cdots,x_n^0)f(x_1^0,\cdots,x_n^0)

在理解定理14.4時,須要注意的是 f g fg n n m m 維向量值函數,其Frechet導數是 m m n n 列矩陣,等式右邊第一項中: g g m m 行的列向量, f f^\prime n n 列的行向量,而第二項是一個數乘的形式。經過定理14.4,多元導數就和一元導數在乘法運算法則上統一塊兒來了。下面證實定理14.4

證:
首先 g ( x 1 , , x n ) f ( x 1 , , x n ) g ( x 1 0 , , x n 0 ) f ( x 1 0 , , x n 0 ) = g ( x 1 , , x n ) f ( x 1 , , x n ) g ( x 1 0 , , x n 0 ) f ( x 1 , , x n ) + g ( x 1 0 , , x n 0 ) f ( x 1 , , x n ) g ( x 1 0 , , x n 0 ) f ( x 1 0 , , x n 0 ) g(x_1,\cdots,x_n)f(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0) f(x_1^0,\cdots,x_n^0)\\ =g(x_1,\cdots,x_n)f(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0)f(x_1,\cdots,x_n)\\ +g(x_1^0,\cdots,x_n^0)f(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0) f(x_1^0,\cdots,x_n^0) 其次,由可微性,就有 g ( x 1 , , x n ) g ( x 1 0 , , x n 0 ) = g ( x 1 0 , , x n 0 ) Δ x + o 1 ( Δ x ) g(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0)= g^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_1(||\Delta x||) f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) = f ( x 1 0 , , x n 0 ) Δ x + o 2 ( Δ x ) f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)= f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||) 再令 h ( x 1 , , x n ) = f ( x 1 , , x n ) o 1 ( Δ x ) + [ f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) ] Δ x + g ( x 1 0 , , x n 0 ) o 2 ( Δ x ) h(x_1,\cdots,x_n)=f(x_1,\cdots,x_n)o_1(||\Delta x||) \\+[f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)]\Delta x +g(x_1^0,\cdots,x_n^0)o_2(||\Delta x||) 因爲 Δ x k Δ x 1 |\frac{\Delta x_k}{||\Delta x||}|\le 1 再由 f ( x 1 , , x n ) f(x_1,\cdots,x_n)
( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處的連續性,就有 lim Δ x 0 [ f ( x 1 , , x n ) f ( x 1 0 , , x n 0 ) ] Δ x Δ x = 0 \lim_{||\Delta x|| \to 0}{\frac{[f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)]\Delta x}{||\Delta x||}}=0 所以 lim Δ x 0 h ( x 1 , , x n ) Δ x = 0 \lim_{||\Delta x|| \to 0}{\frac{h(x_1,\cdots,x_n)}{||\Delta x||}}=0 F ( x 1 , , x n ) F ( x 1 0 , , x n 0 ) = [ g ( x 1 0 , , x n 0 ) f ( x 1 0 , , x n 0 ) + g ( x 1 0 , , x n 0 ) f ( x 1 0 , , x n 0 ) ] Δ x + h ( x 1 , , x n ) F(x_1,\cdots,x_n)-F(x_1^0,\cdots,x_n^0)=[g(x_1^0,\cdots,x_n^0)f^\prime(x_1^0,\cdots,x_n^0) \\+g^\prime(x_1^0,\cdots,x_n^0)f(x_1^0,\cdots,x_n^0)]\Delta x + h(x_1,\cdots,x_n)

接下來咱們給出多元下的複合函數求導法則:

定理14.5 f f n n m m 維向量函數,在 ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可導, ( y 1 0 , , y m 0 ) = f ( x 1 0 , , x n 0 ) (y_1^0,\cdots,y_m^0)=f(x_1^0,\cdots,x_n^0) , g g m m k k 維向量函數,在 ( y 1 0 , , y m 0 ) (y_1^0,\cdots,y_m^0) 處可導,則 f ( g ( x 1 , , x n ) ) f(g(x_1,\cdots,x_n)) ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可導,而且
( g ( f ( x 1 0 , , x n 0 ) ) ) = g ( f ( x 1 0 , , x n 0 ) ) f ( x 1 0 , , x n 0 ) (g(f(x_1^0,\cdots,x_n^0)))^\prime = g^\prime(f(x_1^0,\cdots,x_n^0))f^\prime(x_1^0,\cdots,x_n^0)

證:
g g ( y 1 0 , , y m 0 ) (y_1^0,\cdots,y_m^0) 可微,則 g ( y 1 , , y m ) g ( y 1 0 , , y m 0 ) = g ( y 1 0 , , y m 0 ) Δ y + o 1 ( Δ y ) (1) \tag{1} g(y_1,\cdots,y_m)-g(y_1^0,\cdots,y_m^0)=\\ g^\prime(y_1^0,\cdots,y_m^0)\Delta y + o_1(||\Delta y||) 再由 f f ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,則 f ( x 1 , , x n ) ( y 1 0 , , y m 0 ) = f ( x 1 0 , , x n 0 ) Δ x + o 2 ( Δ x ) (2) \tag{2} f(x_1,\cdots,x_n)-(y_1^0,\cdots,y_m^0)= f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||) f ( x 1 , , x n ) ( y 1 , , y m ) Δ x = f ( x 1 0 , , x n 0 ) Δ x + o 2 ( Δ x ) Δ x \frac{||f(x_1,\cdots,x_n)-(y_1,\cdots,y_m)||}{||\Delta x||} =||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}|| 由範數的性質,有 f ( x 1 0 , , x n 0 ) Δ x + o 2 ( Δ x ) Δ x f ( x 1 0 , , x n 0 ) Δ x Δ x + o 2 ( Δ x ) Δ x ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}|| \le ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x}{||\Delta x||}||+||\frac{o_2(||\Delta x||)}{||\Delta x||}|| lim Δ x 0 o 2 ( Δ x ) Δ x = 0 \lim_{||\Delta x||\to 0}{\frac{o_2(||\Delta x||)}{||\Delta x||}} = 0 同時設 f i j ( x 1 0 , , x n 0 ) f_{ij}(x_1^0,\cdots,x_n^0) f f 的第 i i 個份量對第 j j 個變元的偏導數,則 f ( x 1 0 , , x n 0 ) Δ x = [ i = 1 n f 1 i ( x 1 0 , , x n 0 ) Δ x i i = 1 n f m i ( x 1 0 , , x n 0 ) Δ x i ] f^\prime(x_1^0,\cdots,x_n^0)\Delta x= \left[ \begin{matrix} \sum_{i=1}^n{f_{1i}(x_1^0,\cdots,x_n^0)\Delta x_i}\\ \cdots\\ \sum_{i=1}^n{f_{mi}(x_1^0,\cdots,x_n^0)\Delta x_i} \end{matrix} \right] 對任意的 1 i m 1\le i \le m ,都要 j 1 n f i j ( x 1 0 , , x n 0 ) Δ x j j = 1 n f i j 2 ( x 1 0 , , x n 0 ) Δ x |\sum_{j-1}^n f_{ij}(x_1^0,\cdots,x_n^0)\Delta x_j| \le \sqrt{\sum_{j=1}^n{f_{ij}^2(x_1^0,\cdots,x_n^0)}} ||\Delta x|| 所以 f ( x 1 0 , , x n 0 ) Δ x i = 1 m j = 1 n f i j 2 ( x 1 0 , , x n 0 ) Δ x ||f^\prime(x_1^0,\cdots,x_n^0)\Delta x|| \le \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}{f_{ij}^2(x_1^0,\cdots,x_n^0)}}||\Delta x|| f ( x 1 0 , , x n 0 ) Δ x Δ x i = 1 m j = 1 n f i j 2 ( x 1 0 , , x n 0 ) ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x}{||\Delta x||}|| \le \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}{f_{ij}^2(x_1^0,\cdots,x_n^0)}} 所以, f ( x 1 0 , , x n 0 ) Δ x + o 2 ( Δ x ) Δ x ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}|| 局部有界,所以 lim Δ x 0 f ( x 1 0 , , x n 0 ) Δ x + o 2 ( Δ x ) Δ x = 0 \lim_{||\Delta x||\to 0}{||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}||}=0 再將(2)代入(1)就能夠證得結論

考慮向量函數和多元函數複合的情形: g ( y 1 , , y m ) g(y_1,\cdots,y_m) m m 元函數, f ( x 1 , , x n ) f(x_1,\cdots,x_n) n n m m 維向量函數, g g f ( x 1 0 , , x n 0 ) f(x_1^0,\cdots,x_n^0) 處可微, f f ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微,那麼 g ( f ( x 1 , , x n ) ) g(f(x_1,\cdots,x_n)) ( x 1 0 , , x n 0 ) (x_1^0,\cdots,x_n^0) 處可微。
咱們記 h = g ( f ) h=g(f) ,設 f = ( f 1 , , f m ) f=(f_1,\cdots,f_m) ,應用複合函數求導法則,就有: h ( x 1 0 , , x n 0 ) x i = j = 1 m f j ( x 1 0 , , x n 0 ) x i g ( y 1 0 , , y m 0 ) y j \frac{\partial h(x_1^0,\cdots,x_n^0)}{\partial x_i} =\sum_{j=1}^m{\frac{\partial f_j(x_1^0,\cdots,x_n^0)}{\partial x_i} \frac{\partial g(y_1^0,\cdots,y_m^0)}{\partial y_j}} 這稱爲多元函數求導的鏈式法則

高階偏導數與高階全微分

高階偏導就是偏導的偏導,只不過,在高維情形下,由求偏導次序能否交換的問題。以二元函數爲例, f ( x , y ) f(x,y) 的二階偏導有四個:
2 f x 2 \frac{\partial^2 f}{\partial x^2} 表示對 x x 求兩次偏導, 2 f x y \frac{\partial^2 f}{\partial x\partial y} 表示先對 x x 求偏導,再對 y y 求偏導,其餘兩個也能夠相似寫出。
問題在於 2 f x y = 2 f y x \frac{\partial^2 f}{\partial x\partial y}=\frac{\partial^2 f}{\partial y\partial x} 是否成立?下面咱們證實:在高階偏導數連續的條件下,偏導次序是能夠交換的。

定理14.6 f ( x , y ) f(x,y) ( x 0 , y 0 ) (x_0,y_0) 的某個鄰域上可求二階偏導數,而且 2 f x y , 2 f y x \frac{\partial^2 f}{\partial x\partial y},\frac{\partial^2 f}{\partial y\partial x} 都在 ( x 0 , y 0 ) (x_0,y_0) 處連續,則 2 f ( x 0 , y 0 ) x y = 2 f ( x 0 , y 0 ) y x \frac{\partial^2 f(x_0,y_0)}{\partial x\partial y}= \frac{\partial^2 f(x_0,y_0)}{\partial y\partial x}

證:
首先 [ f ( x , y ) f ( x , y 0 ) ] [ f ( x 0 , y ) f ( x 0 , y 0 ) ] ( x x 0 ) ( y y 0 ) = [ f ( x , y ) f ( x 0 , y ) ] [ f ( x , y 0 ) f ( x 0 , y 0 ) ] ( x x 0 ) ( y y 0 ) \frac{[f(x,y)-f(x,y_0)]-[f(x_0,y)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} = \frac{[f(x,y)-f(x_0,y)]-[f(x,y_0)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} 由拉格朗日中值定理,存在 ( 0 , 1 ) (0,1) 之間的正實數 θ 1 \theta_1 θ 2 \theta_2 [ f ( x , y ) f ( x , y 0 ) ] [ f ( x 0 , y ) f ( x 0 , y 0 ) ] ( x x 0 ) ( y y 0 ) = f x ( x 0 + θ 1 ( x x 0 ) , y ) f x ( x 0 + θ 1 ( x x 0 ) , y 0 ) y y 0 = f x y ( x 0 + θ 1 ( x x 0 ) , y 0 + θ 2 ( y y 0 ) ) \frac{[f(x,y)-f(x,y_0)]-[f(x_0,y)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} \\= \frac{ f_x(x_0+\theta_1(x-x_0),y)-f_x(x_0+\theta_1(x-x_0),y_0) }{y-y_0}\\=f_{xy}(x_0+\theta_1(x-x_0),y_0+\theta_2(y-y_0)) h ( x , y ) = [ f ( x , y ) f ( x , y 0 ) ] [ f ( x 0 , y ) f ( x 0 , y 0 ) ] ( x x 0 ) ( y y 0 ) h(x,y)=\frac{[f(x,y)-f(x,y_0)]-[f(x_0,y)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} h ( x , y ) h(x,y) 的全面極限和兩個累次極限存在,相等,這樣就能夠證得偏導次序可交換

咱們假設二元函數在 ( x 0 , y 0 ) (x_0,y_0) 的某個鄰域上各階偏導數都存在,那麼,各階偏導數都在 ( x 0 , y 0 ) (x_0,y_0) 處連續(由於連續可微),考察函數: h ( t ) = f ( x 0 + t , y 0 + t ) h(t)=f(x_0+t,y_0+t) ,則 h ( t ) h(t) t = 0 t=0 處的各階偏導數:
h ( k ) ( 0 ) = i = 0 k C k i k f ( x 0 , y 0 ) x i y ( k i ) h^{(k)}(0)=\sum_{i=0}^{k}{C_k^i \frac{\partial^k f(x_0,y_0)}{\partial x^i \partial y^{(k-i)}}} 這就和二項式定理相似,其餘高階導數的求法,大多用到數學概括法,這裏再也不贅述。

方向導數

在一元狀況下,導數有左導數和右導數,而在多元情形下,因爲方向遠遠不止兩個,但咱們仍是能夠定義出方向導數。
方向向量就定義爲 d = ( d 1 , , d n ) d=(d_1,\cdots,d_n) ,其中 k = 1 n d k 2 = 1 \sqrt{\sum_{k=1}^n{d_k^2}}=1 d d 就稱爲方向向量。方向導數就定義爲極限:
f ( x ) d = lim t 0 + f ( x + t d ) f ( x ) t \frac{\partial f(x)}{\partial d}=\lim_{t\to 0^+}{\frac{f(x+td)-f(x)}{t}} 方向導數該如何計算呢?若是 f ( x ) f(x) f ( x 0 ) f(x_0) 處可微,那麼
f ( x 0 + t d ) f ( x 0 ) = t f ( x 0 ) d T + o ( t ) f(x_0+td)-f(x_0)=tf^\prime(x_0)d^T+o(t) 這樣
f ( x 0 ) d = f ( x 0 ) d T \frac{\partial f(x_0)}{\partial d} = f^\prime(x_0)d^T 實際上就是偏導按照方向進行加權。

高維泰勒公式

高維泰勒公式,就是 f ( x 0 + t ( x x 0 ) ) f(x_0+t(x-x_0)) 0 0 處的泰勒公式,再令 t = 1 t=1 ,高維泰勒公式形式比較複雜,在三階以上很難寫出通常的形式。不過,咱們這裏給出零階,一階,二階的泰勒公式的形式,在多元函數極值判斷中起到重要的做用。咱們稱矩陣 H f ( x 0 ) = [ f 11 ( x 0 ) f 12 ( x 0 ) f 1 n ( x 0 ) f 21 ( x 0 ) f 22 ( x 0 ) f 2 n ( x 0 ) f n 1 ( x 0 ) f n 2 ( x 0 ) f n n ( x 0 ) ] H_f(x_0) = \left[ \begin{matrix} f_{11}(x_0)&f_{12}(x_0)&\cdots&f_{1n}(x_0)\\ f_{21}(x_0)&f_{22}(x_0)&\cdots&f_{2n}(x_0)\\ \cdots&\cdots&\cdots&\cdots\\ f_{n1}(x_0)&f_{n2}(x_0)&\cdots&f_{nn}(x_0) \end{matrix}\right]

相關文章
相關標籤/搜索