JavaShuo
欄目
標籤
AttnGAN: Fine-Grained Text to Image Generationwith Attentional Generative Adversarial Networks 論文解讀
時間 2020-12-23
欄目
HTML
简体版
原文
原文鏈接
attnGAN是CVPR 2018的一篇文章,我覺得寫得很好,是十分值得一讀的文章。文章引進了注意力(attention)機制。 Attentional Generative Adversarial Network(AttnGAN)能夠生成細粒度(fine-grained)細節的的圖片,與之前的text to image最好的 文章相比在CUB數據集上的inception score 提高了14.
>>阅读原文<<
相關文章
1.
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
2.
論文閱讀1《AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networ》
3.
DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis 論文解讀
4.
Generative Adversarial Text to Image Synthesis 論文解讀
5.
text to image(二):《Generative Adversarial Text to Image Synthesis》
6.
Generative Adversarial Text to Image Synthesis
7.
《Generative Adversarial Text to Image Synthesis》閱讀理解
8.
Stack GAN:Text to Photo-realistic Image Synthesiswith Stacked Generative Adversarial Networks 論文解讀
9.
CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis
10.
理解AttnGAN: Text-to-Image convertor
更多相關文章...
•
C# 文本文件的讀寫
-
C#教程
•
*.hbm.xml映射文件詳解
-
Hibernate教程
•
JDK13 GA發佈:5大特性解讀
•
Scala 中文亂碼解決
相關標籤/搜索
論文解讀
networks
adversarial
generative
attentional
image
論文閱讀
text
CV論文閱讀
論文
HTML
Thymeleaf 教程
Spring教程
MyBatis教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
深度學習硬件架構簡述
2.
重溫矩陣(V) 主成份分析
3.
國慶佳節第四天,談談我月收入增加 4K 的故事
4.
一起學nRF51xx 23 - s130藍牙API介紹
5.
2018最爲緊缺的十大崗位,技術崗佔80%
6.
第一次hibernate
7.
SSM項目後期添加數據權限設計
8.
人機交互期末複習
9.
現在無法開始異步操作。異步操作只能在異步處理程序或模塊中開始,或在頁生存期中的特定事件過程中開始...
10.
微信小程序開發常用元素總結1-1
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
2.
論文閱讀1《AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networ》
3.
DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis 論文解讀
4.
Generative Adversarial Text to Image Synthesis 論文解讀
5.
text to image(二):《Generative Adversarial Text to Image Synthesis》
6.
Generative Adversarial Text to Image Synthesis
7.
《Generative Adversarial Text to Image Synthesis》閱讀理解
8.
Stack GAN:Text to Photo-realistic Image Synthesiswith Stacked Generative Adversarial Networks 論文解讀
9.
CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis
10.
理解AttnGAN: Text-to-Image convertor
>>更多相關文章<<