在訓練網絡時能夠利用別人的pre-train model來初始化的網絡,caffe能夠實現兩個網絡參數的轉化,前提條件是轉化的層的參數設計是一致的,如下程序是轉化了三個卷積層和三個全鏈接層的參數,python的代碼以下:python
import caffe caffe.set_mode_gpu() train_net = caffe.Net('/home/python_code/caffe/trainmodel.prototxt', '/home/python_code/caffe/gendernet_50000.caffemodel', caffe.TEST) test_net = caffe.Net('/home/python_code/caffe/deploy.prototxt', caffe.TEST) test_net.save('/home/python_code/caffe/gendernet.caffemodel') params = ['conv1', 'conv2', 'conv3', 'fc6', 'fc7', 'fc8'] params_trans = ['conv1', 'conv2', 'conv3', 'fc6', 'fc7', 'fc8'] train_params = {pr: (train_net.params[pr][0].data, train_net.params[pr][1].data) for pr in params} test_params = {pr: (test_net.params[pr][0].data, test_net.params[pr][1].data) for pr in params_trans} for pr_train, pr_test in zip(params, params_trans): test_params[pr_test][0].flat = train_params[pr_train][0].flat test_params[pr_test][1][...] = train_params[pr_train][1] test_net.save('/home/python_code/caffe/gendernet.caffemodel')