package com.sinosoft.lis.utils; import java.awt.Graphics2D; import java.awt.color.ColorSpace; import java.awt.image.BufferedImage; import java.awt.image.ColorConvertOp; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; /** * 圖片類似性 */ public class ImageSimilarity { public static int size = 32; public static int smallerSize = 8; // DCT function stolen from // http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java private static double[] c; static { c = new double[size]; for (int i = 1; i < size; i++) { c[i] = 1; } c[0] = 1 / Math.sqrt(2.0); } /** * 經過漢明距離計算類似度 * * @param hash1 * @param hash2 * @return */ public static double calSimilarity(String hash1, String hash2) { return calSimilarity(getHammingDistance(hash1, hash2)); } /** * 經過漢明距離計算類似度 * * @param hammingDistance * @return */ public static double calSimilarity(int hammingDistance) { int length = size * size; double similarity = (length - hammingDistance) / (double) length; // 使用指數曲線調整類似度結果 similarity = Math.pow(similarity, 2); return similarity; } /** * 經過漢明距離計算類似度 * * @param image1 * @param image2 * @return * @throws IOException */ public static double calSimilarity(File image1, File image2) throws IOException { return calSimilarity(getHammingDistance(image1, image2)); } /** * 得到漢明距離 * * @param hash1 * @param hash2 * @return */ public static int getHammingDistance(String hash1, String hash2) { int counter = 0; for (int k = 0; k < hash1.length(); k++) { if (hash1.charAt(k) != hash2.charAt(k)) { counter++; } } return counter; } /** * 得到漢明距離 * * @param image1 * @param image2 * @return * @throws IOException */ public static int getHammingDistance(File image1, File image2) throws IOException { return getHammingDistance(getHash(image1), getHash(image2)); } /** * 返回二進制字符串,相似「001010111011100010」,可用於計算漢明距離 * * @param imageFile * @return * @throws IOException * @throws Exception */ public static String getHash(File imageFile) throws IOException { BufferedImage img = ImageIO.read(imageFile); /* * 1. Reduce size. Like Average Hash, pHash starts with a small image. * However, the image is larger than 8x8; 32x32 is a good size. This is * really done to simplify the DCT computation and not because it is * needed to reduce the high frequencies. */ img = resize(img, size, size); /* * 2. Reduce color. The image is reduced to a grayscale just to further * simplify the number of computations. */ img = grayscale(img); double[][] vals = new double[size][size]; for (int x = 0; x < img.getWidth(); x++) { for (int y = 0; y < img.getHeight(); y++) { vals[x][y] = getBlue(img, x, y); } } /* * 3. Compute the DCT. The DCT separates the image into a collection of * frequencies and scalars. While JPEG uses an 8x8 DCT, this algorithm * uses a 32x32 DCT. */ // long start = System.currentTimeMillis(); double[][] dctVals = applyDCT(vals); /* * 4. Reduce the DCT. This is the magic step. While the DCT is 32x32, just * keep the top-left 8x8. Those represent the lowest frequencies in the * picture. */ /* * 5. Compute the average value. Like the Average Hash, compute the mean * DCT value (using only the 8x8 DCT low-frequency values and excluding * the first term since the DC coefficient can be significantly different * from the other values and will throw off the average). */ double total = 0; for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { total += dctVals[x][y]; } } total -= dctVals[0][0]; double avg = total / (double) ((smallerSize * smallerSize) - 1); /* * 6. Further reduce the DCT. This is the magic step. Set the 64 hash bits * to 0 or 1 depending on whether each of the 64 DCT values is above or * below the average value. The result doesn't tell us the actual low * frequencies; it just tells us the very-rough relative scale of the * frequencies to the mean. The result will not vary as long as the * overall structure of the image remains the same; this can survive gamma * and color histogram adjustments without a problem. */ StringBuilder hash = new StringBuilder(); for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { if (x != 0 && y != 0) { hash.append((dctVals[x][y] > avg ? "1" : "0")); } } } return hash.toString(); } private static BufferedImage resize(BufferedImage image, int width, int height) { BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); Graphics2D g = resizedImage.createGraphics(); g.drawImage(image, 0, 0, width, height, null); g.dispose(); return resizedImage; } private static BufferedImage grayscale(BufferedImage img) { new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null).filter(img, img); return img; } private static int getBlue(BufferedImage img, int x, int y) { return (img.getRGB(x, y)) & 0xff; } private static double[][] applyDCT(double[][] f) { int N = size; double[][] F = new double[N][N]; for (int u = 0; u < N; u++) { for (int v = 0; v < N; v++) { double sum = 0.0; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { sum += Math.cos(((2 * i + 1) / (2.0 * N)) * u * Math.PI) * Math.cos(((2 * j + 1) / (2.0 * N)) * v * Math.PI) * (f[i][j]); } } sum *= ((c[u] * c[v]) / 4.0); F[u][v] = sum; } } return F; } }
調用對比功能,傳入兩個圖片的file對象,圖片越類似,數值越接近於1,當圖片相同時,等於1java
ImageSimilarity.calSimilarity(imageFile1, imageFile2) == 1.0