從源碼角度看CPU相關日誌

簡介

(本文原地址在個人博客CheapTalks, 歡迎你們來看看~)java

安卓系統中,普通開發者經常遇到的是ANR(Application Not Responding)問題,即應用主線程沒有相應。根本的緣由在於安卓框架特殊設定,將專門作UI相關的、用戶可以敏銳察覺到的操做放在了一個專門的線程中,即主線程。一旦這個線程在規定的時間內沒有完成某個任務,如廣播onReceive,Activity跳轉,或者bindApplication,那麼框架就會產生所謂的ANR,彈出對話框,讓用戶選擇繼續等待或者殺死沒有完成任務的應用進程。android

老生常談的說法是開發者在主線程中執行了耗時操做致使了任務執行時間過久,這樣的問題一般很好定位與解決,每每打個bugreport這個ANR的root cause就原形畢露了,再不濟咱們也可以經過LOG定位到耗時點。數組

今天咱們講的是另外一種常見的狀況,這種狀況每每是因爲CPU硬件設備的落後、底層CPU調控策略不當致使的。這種問題很惱人,明明按照常理絕對不會出現耗時的地方由於它也可以出現ANR和卡頓,給用戶帶來極其糟糕的體驗。bash

這篇文章我將先給出一個示例,經過ANR日誌反應當前的系統情況,而後從源碼角度看安卓framework是如何打出這些LOG的。app

示例

如下是我截取的一段LOG,系統頻繁的打出BIND_APPLICATION的耗時日誌,這些日誌出現的十分頻繁,平均每兩秒就出現一次,調用bindApplication有時甚至可以超過10s+,框架

這種狀況是十分嚴重的,當系統要啓動一個前臺廣播時,就須要10s內完成這個任務,不然就會出現ANR。若是啓動的這個前臺廣播要運行在一個沒有啓動的進程中,那麼在啓動廣播以前就要開啓一個進程,而後調用bindApplication以觸發Application.onCreate。這期間會先將BIND_APPLICATION、RECEIVER依次enqueue到ActivityThread$H主線程隊列中,若是BIND_APPLICATION的處理時間過長,將會間接的致使RECEIER的任務沒有獲得處理,最終致使ANR。一樣的原理,這種狀況甚至會致使Input的任務沒有及時獲得處理,最終致使用戶可察覺的卡頓。ide

08-28 20:35:58.737  4635  4635 I tag_activity_manager: [0,com.android.providers.calendar,110,3120]
08-28 20:35:58.757  4653  4653 I tag_activity_manager: [0,com.xiaomi.metoknlp,110,3073]
08-28 20:35:58.863  4601  4601 I tag_activity_manager: [0,android.process.acore,110,3392]
08-28 20:36:00.320  5040  5040 I tag_activity_manager: [0,com.lbe.security.miui,110,3045]
08-28 20:36:00.911  4233  4233 I tag_activity_manager: [0,com.miui.securitycenter.remote,110,8653]
08-28 20:36:03.254  4808  4808 I tag_activity_manager: [0,com.android.phone,110,7059]
08-28 20:36:05.538  5246  5246 I tag_activity_manager: [0,com.xiaomi.market,110,3406]
08-28 20:36:09.006  5153  5153 I tag_activity_manager: [0,com.miui.klo.bugreport,110,10166]
08-28 20:36:09.070  5118  5118 I tag_activity_manager: [0,com.android.settings,110,10680]
08-28 20:36:11.259  5570  5570 I tag_activity_manager: [0,com.miui.core,110,4895]複製代碼

ActivityManagerService經過Binder call調用到應用的ActivityThread方法,而後將任務enqueue處處理主線程隊列中oop

// bind call 調用到這個方法
        public final void bindApplication(String processName, ApplicationInfo appInfo, List<ProviderInfo> providers, ComponentName instrumentationName, ProfilerInfo profilerInfo, Bundle instrumentationArgs, IInstrumentationWatcher instrumentationWatcher, IUiAutomationConnection instrumentationUiConnection, int debugMode, boolean enableOpenGlTrace, boolean isRestrictedBackupMode, boolean persistent, Configuration config, CompatibilityInfo compatInfo, Map<String, IBinder> services, Bundle coreSettings) {

...

                // 封裝AppBindData對象
            AppBindData data = new AppBindData();
...
            sendMessage(H.BIND_APPLICATION, data);
        }
...

    private class H extends Handler {
...
        public static final int BIND_APPLICATION = 110;
...

        public void handleMessage(Message msg) {
            if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
            switch (msg.what) {
            ...
            case BIND_APPLICATION:
                  // 在主線程隊列中進程執行
                Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "bindApplication");
                AppBindData data = (AppBindData)msg.obj;
                handleBindApplication(data);
                Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                break;
            ...
            }
...複製代碼

上面的例子中,系統很快不出所料的出現了ANR,而且這個問題不是因爲在APP中作了耗時操做,而是由於系統CPU負載太高致使的。如下貼出CPU負載日誌:ui

// bindApplication卡了主線程57s+
Running message is { when=-57s68ms what=110 obj=AppBindData{appInfo=ApplicationInfo{be09873 com.android.settings}} target=android.app.ActivityThread$H planTime=1504652580856 dispatchTime=1504652580897 finishTime=0 }
Message 0: { when=-57s35ms what=140 arg1=5 target=android.app.ActivityThread$H planTime=1504652580890 dispatchTime=0 finishTime=0 }

// 分析了一下發生異常時的系統狀態
08-28 20:36:13.000 2692 2759 E ActivityManager: ANR in com.android.settings 
08-28 20:36:13.000 2692 2759 E ActivityManager: PID: 5118 
// 從左到右,分別是最近1分鐘,5分鐘,15分鐘的CPU負載,超過11就是負載過分
08-28 20:36:13.000 2692 2759 E ActivityManager: Load: 20.12 / 13.05 / 6.96 
// 發生ANR時,CPU的使用狀況
08-28 20:36:13.000 2692 2759 E ActivityManager: CPU usage from 2967ms to -4440ms ago:  
// systemserver過於繁忙
08-28 20:36:13.000 2692 2759 E ActivityManager: 73% 2692/system_server: 57% user + 15% kernel / faults: 16217 minor 11 major 

08-28 20:36:13.000 2692 2759 E ActivityManager: 61% 4840/com.miui.home: 55% user + 5.4% kernel / faults: 26648 minor 17 major 
08-28 20:36:13.000 2692 2759 E ActivityManager: 19% 330/mediaserver: 17% user + 2.1% kernel / faults: 5180 minor 18 major 
08-28 20:36:13.000 2692 2759 E ActivityManager: 18% 4096/com.android.systemui: 14% user + 4% kernel / faults: 12965 minor 30 major 
...複製代碼

固然,證實系統致使ANR不只僅須要CPU Load日誌,同時也須要排除當前應用是否有耗時操做、耗時binder call的調用、是否等待鎖等等狀況。排除以後,就能夠判斷確認當前問題是因爲CPU資源稀缺,致使應用執行bindApplication沒有拿到足夠的時間片,致使任務沒有及時的完成,最終間接的致使隊列排名靠後的廣播或服務ANR。this

深刻源碼

AMS.appNotResponding

private static final String TAG = TAG_WITH_CLASS_NAME ? "ActivityManagerService" : TAG_AM;

    final void appNotResponding(ProcessRecord app, ActivityRecord activity, ActivityRecord parent, boolean aboveSystem, final String annotation) {
...

        long anrTime = SystemClock.uptimeMillis();
        // 若是開啓了CPU監聽,將會先更新CPU的使用狀況
        if (MONITOR_CPU_USAGE) {
            updateCpuStatsNow();
        }

...
         // 新建一個用戶跟蹤CPU使用狀況的對象
         // 將會打印因此線程的CPU使用情況
        final ProcessCpuTracker processCpuTracker = new ProcessCpuTracker(true);

...

        String cpuInfo = null;
        if (MONITOR_CPU_USAGE) {
            updateCpuStatsNow();
            synchronized (mProcessCpuTracker) {
                cpuInfo = mProcessCpuTracker.printCurrentState(anrTime);
            }
            info.append(processCpuTracker.printCurrentLoad());
            info.append(cpuInfo);
        }

        info.append(processCpuTracker.printCurrentState(anrTime));

         // 直接將LOG打印出來
        Slog.e(TAG, info.toString());
...
    }複製代碼

AMS.updateCpuStatsNow

void updateCpuStatsNow() {
        synchronized (mProcessCpuTracker) {
            mProcessCpuMutexFree.set(false);
            final long now = SystemClock.uptimeMillis();
            boolean haveNewCpuStats = false;

              // 最少每5秒更新CPU的數據
            if (MONITOR_CPU_USAGE &&
                    mLastCpuTime.get() < (now - MONITOR_CPU_MIN_TIME)) {
                mLastCpuTime.set(now);
                mProcessCpuTracker.update();
                if (mProcessCpuTracker.hasGoodLastStats()) {
                    haveNewCpuStats = true;
                    //Slog.i(TAG, mProcessCpu.printCurrentState());
                    //Slog.i(TAG, "Total CPU usage: "
                    // + mProcessCpu.getTotalCpuPercent() + "%");

                    // Slog the cpu usage if the property is set.
                    if ("true".equals(SystemProperties.get("events.cpu"))) {
                         // 用戶態時間
                        int user = mProcessCpuTracker.getLastUserTime();
                        // 系統態時間
                        int system = mProcessCpuTracker.getLastSystemTime();
                        // IO等待時間
                        int iowait = mProcessCpuTracker.getLastIoWaitTime();
                        // 硬中斷時間
                        int irq = mProcessCpuTracker.getLastIrqTime();
                        // 軟中斷時間
                        int softIrq = mProcessCpuTracker.getLastSoftIrqTime();
                        // 閒置時間
                        int idle = mProcessCpuTracker.getLastIdleTime();

                        int total = user + system + iowait + irq + softIrq + idle;
                        if (total == 0) total = 1;

                             // 輸出百分比
                        EventLog.writeEvent(EventLogTags.CPU,
                                ((user + system + iowait + irq + softIrq) * 100) / total,
                                (user * 100) / total,
                                (system * 100) / total,
                                (iowait * 100) / total,
                                (irq * 100) / total,
                                (softIrq * 100) / total);
                    }
                }
            }

              // 各種CPU時間歸類與更新
            final BatteryStatsImpl bstats = mBatteryStatsService.getActiveStatistics();
            synchronized (bstats) {
                synchronized (mPidsSelfLocked) {
                    if (haveNewCpuStats) {
                        if (bstats.startAddingCpuLocked()) {
                            int totalUTime = 0;
                            int totalSTime = 0;
                            // 遍歷全部ProcessCpuTracker
                            final int N = mProcessCpuTracker.countStats();
                            for (int i = 0; i < N; i++) {
                                ProcessCpuTracker.Stats st = mProcessCpuTracker.getStats(i);
                                if (!st.working) {
                                    continue;
                                }
                                // ProcessRecord的CPU時間更新
                                ProcessRecord pr = mPidsSelfLocked.get(st.pid);
                                totalUTime += st.rel_utime;
                                totalSTime += st.rel_stime;
                                if (pr != null) {
                                    BatteryStatsImpl.Uid.Proc ps = pr.curProcBatteryStats;
                                    if (ps == null || !ps.isActive()) {
                                        pr.curProcBatteryStats = ps = bstats.getProcessStatsLocked(
                                                pr.info.uid, pr.processName);
                                    }
                                    ps.addCpuTimeLocked(st.rel_utime, st.rel_stime);
                                    pr.curCpuTime += st.rel_utime + st.rel_stime;
                                } else {
                                    BatteryStatsImpl.Uid.Proc ps = st.batteryStats;
                                    if (ps == null || !ps.isActive()) {
                                        st.batteryStats = ps = bstats.getProcessStatsLocked(
                                                bstats.mapUid(st.uid), st.name);
                                    }
                                    ps.addCpuTimeLocked(st.rel_utime, st.rel_stime);
                                }
                            }
                            // 將數據更新到BatteryStatsImpl
                            final int userTime = mProcessCpuTracker.getLastUserTime();
                            final int systemTime = mProcessCpuTracker.getLastSystemTime();
                            final int iowaitTime = mProcessCpuTracker.getLastIoWaitTime();
                            final int irqTime = mProcessCpuTracker.getLastIrqTime();
                            final int softIrqTime = mProcessCpuTracker.getLastSoftIrqTime();
                            final int idleTime = mProcessCpuTracker.getLastIdleTime();
                            bstats.finishAddingCpuLocked(totalUTime, totalSTime, userTime,
                                    systemTime, iowaitTime, irqTime, softIrqTime, idleTime);
                        }
                    }
                }

                    // 每30分鐘寫入電池數據
                if (mLastWriteTime < (now - BATTERY_STATS_TIME)) {
                    mLastWriteTime = now;
                    mBatteryStatsService.scheduleWriteToDisk();
                }
            }
        }
    }複製代碼

BatteryStatsImpl.finishAddingCpuLocked

public void finishAddingCpuLocked(int totalUTime, int totalSTime, int statUserTime, int statSystemTime, int statIOWaitTime, int statIrqTime, int statSoftIrqTime, int statIdleTime) {
        if (DEBUG) Slog.d(TAG, "Adding cpu: tuser=" + totalUTime + " tsys=" + totalSTime
                + " user=" + statUserTime + " sys=" + statSystemTime
                + " io=" + statIOWaitTime + " irq=" + statIrqTime
                + " sirq=" + statSoftIrqTime + " idle=" + statIdleTime);
        mCurStepCpuUserTime += totalUTime;
        mCurStepCpuSystemTime += totalSTime;
        mCurStepStatUserTime += statUserTime;
        mCurStepStatSystemTime += statSystemTime;
        mCurStepStatIOWaitTime += statIOWaitTime;
        mCurStepStatIrqTime += statIrqTime;
        mCurStepStatSoftIrqTime += statSoftIrqTime;
        mCurStepStatIdleTime += statIdleTime;
    }複製代碼

ProcessCpuTracker.update

update方法主要是讀取/proc/stat與/proc/loadavg文件的數據來更新當前的CPU時間,其中CPU負載接口onLoadChange在LoadAverageService中有使用,用於展現一個動態的View在界面,便於查看CPU的實時數據。

具體關於這兩個文件,我會在最後列出這兩個節點文件的實例數據並做出簡單的解析。

關於/proc目錄,它實際上是一個虛擬目錄,其子目錄與子文件也都是虛擬的,並不佔用實際的存儲空間,它容許動態的讀取出系統的實時信息。

public void update() {
        if (DEBUG) Slog.v(TAG, "Update: " + this);

        final long nowUptime = SystemClock.uptimeMillis();
        final long nowRealtime = SystemClock.elapsedRealtime();

          // 複用size=7的LONG數組
        final long[] sysCpu = mSystemCpuData;
        // 讀取/proc/stat文件
        if (Process.readProcFile("/proc/stat", SYSTEM_CPU_FORMAT,
                null, sysCpu, null)) {
            // Total user time is user + nice time.
            final long usertime = (sysCpu[0]+sysCpu[1]) * mJiffyMillis;
            // Total system time is simply system time.
            final long systemtime = sysCpu[2] * mJiffyMillis;
            // Total idle time is simply idle time.
            final long idletime = sysCpu[3] * mJiffyMillis;
            // Total irq time is iowait + irq + softirq time.
            final long iowaittime = sysCpu[4] * mJiffyMillis;
            final long irqtime = sysCpu[5] * mJiffyMillis;
            final long softirqtime = sysCpu[6] * mJiffyMillis;

            // This code is trying to avoid issues with idle time going backwards,
            // but currently it gets into situations where it triggers most of the time. :(
            if (true || (usertime >= mBaseUserTime && systemtime >= mBaseSystemTime
                    && iowaittime >= mBaseIoWaitTime && irqtime >= mBaseIrqTime
                    && softirqtime >= mBaseSoftIrqTime && idletime >= mBaseIdleTime)) {
                mRelUserTime = (int)(usertime - mBaseUserTime);
                mRelSystemTime = (int)(systemtime - mBaseSystemTime);
                mRelIoWaitTime = (int)(iowaittime - mBaseIoWaitTime);
                mRelIrqTime = (int)(irqtime - mBaseIrqTime);
                mRelSoftIrqTime = (int)(softirqtime - mBaseSoftIrqTime);
                mRelIdleTime = (int)(idletime - mBaseIdleTime);
                mRelStatsAreGood = true;
...

                mBaseUserTime = usertime;
                mBaseSystemTime = systemtime;
                mBaseIoWaitTime = iowaittime;
                mBaseIrqTime = irqtime;
                mBaseSoftIrqTime = softirqtime;
                mBaseIdleTime = idletime;

            } else {
                mRelUserTime = 0;
                mRelSystemTime = 0;
                mRelIoWaitTime = 0;
                mRelIrqTime = 0;
                mRelSoftIrqTime = 0;
                mRelIdleTime = 0;
                mRelStatsAreGood = false;
                Slog.w(TAG, "/proc/stats has gone backwards; skipping CPU update");
                return;
            }
        }

        mLastSampleTime = mCurrentSampleTime;
        mCurrentSampleTime = nowUptime;
        mLastSampleRealTime = mCurrentSampleRealTime;
        mCurrentSampleRealTime = nowRealtime;

        final StrictMode.ThreadPolicy savedPolicy = StrictMode.allowThreadDiskReads();
        try {
               // 收集/proc文件節點信息
            mCurPids = collectStats("/proc", -1, mFirst, mCurPids, mProcStats);
        } finally {
            StrictMode.setThreadPolicy(savedPolicy);
        }

        final float[] loadAverages = mLoadAverageData;
        // 讀取/proc/loadavg文件信息
        // 即最新1分鐘,5分鐘,15分鐘的CPU負載
        if (Process.readProcFile("/proc/loadavg", LOAD_AVERAGE_FORMAT,
                null, null, loadAverages)) {
            float load1 = loadAverages[0];
            float load5 = loadAverages[1];
            float load15 = loadAverages[2];
            if (load1 != mLoad1 || load5 != mLoad5 || load15 != mLoad15) {
                mLoad1 = load1;
                mLoad5 = load5;
                mLoad15 = load15;
                // onLoadChanged是個空實現,在LoadAverageService的內部類對它進行了重寫,用來更新CPU負載的數據
                onLoadChanged(load1, load5, load15);
            }
        }
...
    }複製代碼

ProcessCpuTracker.collectStats

private int[] collectStats(String statsFile, int parentPid, boolean first,
            int[] curPids, ArrayList<Stats> allProcs) {{
         // 獲取感興趣的進程id
        int[] pids = Process.getPids(statsFile, curPids);
        int NP = (pids == null) ? 0 : pids.length;
        int NS = allProcs.size();
        int curStatsIndex = 0;
        for (int i=0; i<NP; i++) {
            int pid = pids[i];
            if (pid < 0) {
                NP = pid;
                break;
            }
            Stats st = curStatsIndex < NS ? allProcs.get(curStatsIndex) : null;

            if (st != null && st.pid == pid) {
                // Update an existing process...
                st.added = false;
                st.working = false;
                curStatsIndex++;
                if (DEBUG) Slog.v(TAG, "Existing "
                        + (parentPid < 0 ? "process" : "thread")
                        + " pid " + pid + ": " + st);

                if (st.interesting) {
                    final long uptime = SystemClock.uptimeMillis();

                        // 進程狀態緩衝數組
                    final long[] procStats = mProcessStatsData;
                    if (!Process.readProcFile(st.statFile.toString(),
                            PROCESS_STATS_FORMAT, null, procStats, null)) {
                        continue;
                    }

                    final long minfaults = procStats[PROCESS_STAT_MINOR_FAULTS];
                    final long majfaults = procStats[PROCESS_STAT_MAJOR_FAULTS];
                    final long utime = procStats[PROCESS_STAT_UTIME] * mJiffyMillis;
                    final long stime = procStats[PROCESS_STAT_STIME] * mJiffyMillis;

                    if (utime == st.base_utime && stime == st.base_stime) {
                        st.rel_utime = 0;
                        st.rel_stime = 0;
                        st.rel_minfaults = 0;
                        st.rel_majfaults = 0;
                        if (st.active) {
                            st.active = false;
                        }
                        continue;
                    }

                    if (!st.active) {
                        st.active = true;
                    }
...

                    st.rel_uptime = uptime - st.base_uptime;
                    st.base_uptime = uptime;
                    st.rel_utime = (int)(utime - st.base_utime);
                    st.rel_stime = (int)(stime - st.base_stime);
                    st.base_utime = utime;
                    st.base_stime = stime;
                    st.rel_minfaults = (int)(minfaults - st.base_minfaults);
                    st.rel_majfaults = (int)(majfaults - st.base_majfaults);
                    st.base_minfaults = minfaults;
                    st.base_majfaults = majfaults;
                    st.working = true;
                }

                continue;
            }

            if (st == null || st.pid > pid) {
                // We have a new process!
                st = new Stats(pid, parentPid, mIncludeThreads);
                allProcs.add(curStatsIndex, st);
                curStatsIndex++;
                NS++;
...

                final String[] procStatsString = mProcessFullStatsStringData;
                final long[] procStats = mProcessFullStatsData;
                st.base_uptime = SystemClock.uptimeMillis();
                String path = st.statFile.toString();
                //Slog.d(TAG, "Reading proc file: " + path);
                if (Process.readProcFile(path, PROCESS_FULL_STATS_FORMAT, procStatsString,
                        procStats, null)) {
                    // This is a possible way to filter out processes that
                    // are actually kernel threads... do we want to? Some
                    // of them do use CPU, but there can be a *lot* that are
                    // not doing anything.
                    st.vsize = procStats[PROCESS_FULL_STAT_VSIZE];
                    if (true || procStats[PROCESS_FULL_STAT_VSIZE] != 0) {
                        st.interesting = true;
                        st.baseName = procStatsString[0];
                        st.base_minfaults = procStats[PROCESS_FULL_STAT_MINOR_FAULTS];
                        st.base_majfaults = procStats[PROCESS_FULL_STAT_MAJOR_FAULTS];
                        st.base_utime = procStats[PROCESS_FULL_STAT_UTIME] * mJiffyMillis;
                        st.base_stime = procStats[PROCESS_FULL_STAT_STIME] * mJiffyMillis;
                    } else {
                        Slog.i(TAG, "Skipping kernel process pid " + pid
                                + " name " + procStatsString[0]);
                        st.baseName = procStatsString[0];
                    }
                } else {
                    Slog.w(TAG, "Skipping unknown process pid " + pid);
                    st.baseName = "<unknown>";
                    st.base_utime = st.base_stime = 0;
                    st.base_minfaults = st.base_majfaults = 0;
                }

                if (parentPid < 0) {
                    getName(st, st.cmdlineFile);
                    if (st.threadStats != null) {
                        mCurThreadPids = collectStats(st.threadsDir, pid, true,
                                mCurThreadPids, st.threadStats);
                    }
                } else if (st.interesting) {
                    st.name = st.baseName;
                    st.nameWidth = onMeasureProcessName(st.name);
                }

                if (DEBUG) Slog.v("Load", "Stats added " + st.name + " pid=" + st.pid
                        + " utime=" + st.base_utime + " stime=" + st.base_stime
                        + " minfaults=" + st.base_minfaults + " majfaults=" + st.base_majfaults);

                st.rel_utime = 0;
                st.rel_stime = 0;
                st.rel_minfaults = 0;
                st.rel_majfaults = 0;
                st.added = true;
                if (!first && st.interesting) {
                    st.working = true;
                }
                continue;
            }

            // This process has gone away!
            st.rel_utime = 0;
            st.rel_stime = 0;
            st.rel_minfaults = 0;
            st.rel_majfaults = 0;
            st.removed = true;
            st.working = true;
            allProcs.remove(curStatsIndex);
            NS--;
            if (DEBUG) Slog.v(TAG, "Removed "
                    + (parentPid < 0 ? "process" : "thread")
                    + " pid " + pid + ": " + st);
            // Decrement the loop counter so that we process the current pid
            // again the next time through the loop.
            i--;
            continue;
        }

        while (curStatsIndex < NS) {
            // This process has gone away!
            final Stats st = allProcs.get(curStatsIndex);
            st.rel_utime = 0;
            st.rel_stime = 0;
            st.rel_minfaults = 0;
            st.rel_majfaults = 0;
            st.removed = true;
            st.working = true;
            allProcs.remove(curStatsIndex);
            NS--;
            if (localLOGV) Slog.v(TAG, "Removed pid " + st.pid + ": " + st);
        }

        return pids;
    }複製代碼

Process.readProcFile

jboolean android_os_Process_readProcFile(JNIEnv* env, jobject clazz, jstring file, jintArray format, jobjectArray outStrings, jlongArray outLongs, jfloatArray outFloats) {
...
    int fd = open(file8, O_RDONLY);
...
    env->ReleaseStringUTFChars(file, file8);

    // 將文件數據讀取到buffer中
    char buffer[256];
    const int len = read(fd, buffer, sizeof(buffer)-1);
    close(fd);
...
    buffer[len] = 0;

    return android_os_Process_parseProcLineArray(env, clazz, buffer, 0, len,
            format, outStrings, outLongs, outFloats);

}複製代碼

Process.cpp parseProcLineArray

jboolean android_os_Process_parseProcLineArray(JNIEnv* env, jobject clazz, char* buffer, jint startIndex, jint endIndex, jintArray format, jobjectArray outStrings, jlongArray outLongs, jfloatArray outFloats) {
    // 先獲取要讀取的數據buffer長度
    const jsize NF = env->GetArrayLength(format);
    const jsize NS = outStrings ? env->GetArrayLength(outStrings) : 0;
    const jsize NL = outLongs ? env->GetArrayLength(outLongs) : 0;
    const jsize NR = outFloats ? env->GetArrayLength(outFloats) : 0;

    jint* formatData = env->GetIntArrayElements(format, 0);
    jlong* longsData = outLongs ?
        env->GetLongArrayElements(outLongs, 0) : NULL;
    jfloat* floatsData = outFloats ?
        env->GetFloatArrayElements(outFloats, 0) : NULL;
...

    jsize i = startIndex;
    jsize di = 0;

    jboolean res = JNI_TRUE;

    // 循環解析buffer中的數據到xxData中
    for (jsize fi=0; fi<NF; fi++) {
        jint mode = formatData[fi];
        if ((mode&PROC_PARENS) != 0) {
            i++;
        } else if ((mode&PROC_QUOTES) != 0) {
            if (buffer[i] == '"') {
                i++;
            } else {
                mode &= ~PROC_QUOTES;
            }
        }
        const char term = (char)(mode&PROC_TERM_MASK);
        const jsize start = i;
...

        jsize end = -1;
        if ((mode&PROC_PARENS) != 0) {
            while (i < endIndex && buffer[i] != ')') {
                i++;
            }
            end = i;
            i++;
        } else if ((mode&PROC_QUOTES) != 0) {
            while (buffer[i] != '"' && i < endIndex) {
                i++;
            }
            end = i;
            i++;
        }
        while (i < endIndex && buffer[i] != term) {
            i++;
        }
        if (end < 0) {
            end = i;
        }

        if (i < endIndex) {
            i++;
            if ((mode&PROC_COMBINE) != 0) {
                while (i < endIndex && buffer[i] == term) {
                    i++;
                }
            }
        }

        if ((mode&(PROC_OUT_FLOAT|PROC_OUT_LONG|PROC_OUT_STRING)) != 0) {
            char c = buffer[end];
            buffer[end] = 0;
            if ((mode&PROC_OUT_FLOAT) != 0 && di < NR) {
                char* end;
                floatsData[di] = strtof(buffer+start, &end);
            }
            if ((mode&PROC_OUT_LONG) != 0 && di < NL) {
                char* end;
                longsData[di] = strtoll(buffer+start, &end, 10);
            }
            if ((mode&PROC_OUT_STRING) != 0 && di < NS) {
                jstring str = env->NewStringUTF(buffer+start);
                env->SetObjectArrayElement(outStrings, di, str);
            }
            buffer[end] = c;
            di++;
        }
    }

    // 將xxData解析到outxxx中
    env->ReleaseIntArrayElements(format, formatData, 0);
    if (longsData != NULL) {
        env->ReleaseLongArrayElements(outLongs, longsData, 0);
    }
    if (floatsData != NULL) {
        env->ReleaseFloatArrayElements(outFloats, floatsData, 0);
    }

    return res;
}複製代碼

實例數據

/proc/stat

// [1]user, [2]nice, [3]system, [4]idle, [5]iowait, [6]irq, [7]softirq
// 1. 從系統啓動開始累計到當前時刻,用戶態CPU時間
// 2. nice值爲負的進程所佔有的CPU時間
// 3. 內核CPU時間
// 4. 除IO等待時間的其它時間
// 5. 硬盤IO等待時間
// 6. 硬中斷時間
// 7. 軟中斷時間
cpu  76704 76700 81879 262824 17071 10 15879 0 0 0
cpu0 19778 22586 34375 106542 7682 7 10185 0 0 0
cpu1 11460 6197 7973 18043 2151 0 1884 0 0 0
cpu2 17438 20917 13339 24945 2845 1 1822 0 0 0
cpu3 28028 27000 26192 113294 4393 2 1988 0 0 0
intr 4942220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 602630 0 0 0 0 0 0 0 0 0 0 0 0 0 15460 0 0 0 0 0 0 67118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1854 8 5 0 10 0 0 0 6328 0 0 0 0 0 0 0 0 0 0 892 0 0 0 0 2 106 2 0 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 7949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10256 3838 0 0 0 0 0 0 0 499 69081 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 725052 0 14911 0 0 0 0 0 1054 0 0 0 0 0 0 2073 0 0 0 1371 5 0 659329 654662 0 0 0 0 0 0 0 0 0 6874 0 7 0 0 0 0 913 312 0 0 0 245372 0 0 2637 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0 0 0 0 13906 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8804 0 0 0 0 0 0 0 0 0 0 0 0 2294 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 13860 0 0 5 5 0 0 0 0 1380 362 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7069 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 // 中斷信息
ctxt 11866606 // 自系統啓動以來CPU發生的上下文交換次數
btime 1507554066 // 系統啓動到如今爲止的時間,單位爲秒
processes 38582    // 系統啓動以來所建立的任務個數目
procs_running 1 // 當前運行隊列的任務的數目
procs_blocked 0 // 當前被阻塞的任務數目
softirq 2359224 2436 298396 2839 517350 2436 2436 496108 329805 2067 705351複製代碼

/proc/loadavg

10.55 19.87 25.93 2/2082 7475複製代碼

/proc/1/stat

1 (init) S 0 0 0 0 -1 4194560 2206 161131 0 62 175 635 175 244 20 0 1 0 0 2547712 313 4294967295 32768 669624 3196243632 3196242928 464108 0 0 0 65536 3224056068 0 0 17 3 0 0 0 0 0 676368 693804 712704複製代碼
相關文章
相關標籤/搜索