公司須要在項目中使用人臉識別SDK,而且對信息安全的要求很是高,在詳細瞭解市場上幾個主流人臉識別SDK後,綜合來看虹軟的Arcface SDK比較符合咱們的需求,它提供了免費版本,而且能夠在離線環境下使用,這一點很是符合咱們對安全性的要求。但有個遺憾的事情,咱們的項目主要使用了Python語言,虹軟官方並無提供Python版本的SDK,所以我本身使用Python封裝了Arcface C++ SDK,便於在項目中使用,這裏將主要過程寫出來供你們探討下。python
1.環境說明
a.注意Win64環境的Python必須使用ArcFace C++(Win64) SDK,若是平臺不一致, 不然可能會出現如下錯誤。數組
OSError: \[WinError 193\] %1 不是有效的 Win32 應用程序
b.因爲SDK中涉及到內存操做,本文使用了ctypes包和cdll包提供的如下幾種方式安全
c_ubyte_p = POINTER(c_ubyte) memcpy = cdll.msvcrt.memcpy malloc = cdll.msvcrt.malloc malloc.restype = c_void_p free = cdll.msvcrt.free
2.Arcface SDK基本數據結構封裝
在封裝數據結構時,必定要注意參數類型,不然可能會致使程序出錯。 數據結構
class MRECT(Structure): # 人臉框 _fields_ = [(u'left', c_int32), (u'top', c_int32), (u'right', c_int32), (u'bottom', c_int32)] class ASFVersion(Structure): # 版本信息 版本號 構建日期 版權說明 _fields_ = [ ('Version', c_char_p), ('BuildDate', c_char_p), ('CopyRight', c_char_p)] class ASFSingleFaceInfo(Structure): # 單人臉信息 人臉框 人臉角度 _fields_ = [ ('faceRect', MRECT), ('faceOrient', c_int32)] class ASFMultiFaceInfo(Structure): # 多人臉信息 人臉框數組 人臉角度數組 人臉數 _fields_ = [ (u'faceRect', POINTER(MRECT)), (u'faceOrient', POINTER(c_int32)), (u'faceNum', c_int32)] class ASFFaceFeature(Structure): # 人臉特徵 人臉特徵 人臉特徵長度 _fields_ = [ ('feature', c_void_p), ('featureSize', c_int32)] class ASFFace3DAngle(Structure): # 人臉角度信息 _fields_ = [ ('roll', c_void_p), ('yaw', c_void_p), ('pitch', c_void_p), ('status', c_void_p), ('num', c_int32)] class ASFAgeInfo(Structure): # 年齡 _fields_ = [ (u'ageArray', c_void_p), (u'num', c_int32)] class ASFGenderInfo(Structure): # 性別 _fields_ = [ (u'genderArray', c_void_p), (u'num', c_int32)] class ASFLivenessThreshold(Structure): # 活體閾值 _fields_ = [ (u'thresholdmodel_BGR', c_float), (u'thresholdmodel_IR', c_int32)] class ASFLivenessInfo(Structure): # 活體信息 _fields_ = [ (u'isLive', c_void_p), (u'num', c_int32)]
3.Arcface SDK接口封裝
a.接口封裝以前須要加載dll庫,Arcface SDK 提供的dll都須要加載。
b.本文中圖片格式使用了ASVL_PAF_RGB24_B8G8R8。
c.每一個接口都須要定義返回值以及參數類型,某些參數類型依賴前文所述的基本數據結構。app
from arcsoft_face_struct import * from ctypes import * from enum import Enum face_dll = CDLL("libarcsoft_face.dll") face_engine_dll = CDLL("libarcsoft_face_engine.dll") ASF_DETECT_MODE_VIDEO = 0x00000000 ASF_DETECT_MODE_IMAGE = 0xFFFFFFFF ASF_NONE = 0x00000000 ASF_FACE_DETECT = 0x00000001 ASF_FACE_RECOGNITION = 0x00000004 ASF_AGE = 0x00000008 ASF_GENDER = 0x00000010 ASF_FACE3DANGLE = 0x00000020 ASF_LIVENESS = 0x00000080 ASF_IR_LIVENESS = 0x00000400 ASVL_PAF_RGB24_B8G8R8 = 0x201 class ArcSoftFaceOrientPriority(Enum): ASF_OP_0_ONLY = 0x1, ASF_OP_90_ONLY = 0x2, ASF_OP_270_ONLY = 0x3, ASF_OP_180_ONLY = 0x4, ASF_OP_0_HIGHER_EXT = 0x5, activate = face_engine_dll.ASFActivation activate.restype = c_int32 activate.argtypes = (c_char_p, c_char_p) init_engine = face_engine_dll.ASFInitEngine init_engine.restype = c_int32 init_engine.argtypes = (c_long, c_int32, c_int32, c_int32, c_int32, POINTER(c_void_p)) detect_face = face_engine_dll.ASFDetectFaces detect_face.restype = c_int32 detect_face.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte), POINTER(ASFMultiFaceInfo)) extract_feature = face_engine_dll.ASFFaceFeatureExtract extract_feature.restype = c_int32 extract_feature.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte), POINTER(ASFSingleFaceInfo), POINTER(ASFFaceFeature)) compare_feature = face_engine_dll.ASFFaceFeatureCompare compare_feature.restype = c_int32 compare_feature.argtypes = (c_void_p, POINTER(ASFFaceFeature), POINTER(ASFFaceFeature), POINTER(c_float)) set_liveness_param = face_engine_dll.ASFSetLivenessParam set_liveness_param.restype = c_int32 set_liveness_param.argtypes = (c_void_p, POINTER(ASFLivenessThreshold)) process = face_engine_dll.ASFProcess process.restype = c_int32 process.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte), POINTER(ASFMultiFaceInfo), c_int32) get_age = face_engine_dll.ASFGetAge get_age.restype = c_int32 get_age.argtypes = (c_void_p, POINTER(ASFAgeInfo)) get_gender = face_engine_dll.ASFGetGender get_gender.restype = c_int32 get_gender.argtypes = (c_void_p, POINTER(ASFGenderInfo)) get_3d_angle = face_engine_dll.ASFGetFace3DAngle get_3d_angle.restype = c_int32 get_3d_angle.argtypes = (c_void_p, POINTER(ASFFace3DAngle)) get_liveness_info = face_engine_dll.ASFGetLivenessScore get_liveness_info.restype = c_int32 get_liveness_info.argtypes = (c_void_p, POINTER(ASFLivenessInfo))
4.封裝接口調用
接下來按照下面的流程圖介紹接口調用(此圖使用 Microsoft Visio 2016自動生成)。
ui
下圖是按照此流程處理獲得的效果圖,因爲畫面有限,只顯示了年齡、性別、活體信息。
3d
a.激活
須要注意app_id和sdk_key須要使用字節類型。rest
app_id = b"" sdk_key = b"" ret = arcsoft\_face\_func.activate(app\_id, sdk\_key) # 激活 if ret == 0 or ret == 90114: print("激活成功") else: print("激活失敗:", ret)
b.初始化
初始化須要將全部須要的功能參數一次性傳入,本文使用了人臉檢測、特徵提取等功能。code
mask = arcsoft_face_func.ASF_FACE_DETECT | \ arcsoft_face_func.ASF_FACE_RECOGNITION | \ arcsoft_face_func.ASF_AGE | \ arcsoft_face_func.ASF_GENDER | \ arcsoft_face_func.ASF_FACE3DANGLE |\ arcsoft_face_func.ASF_LIVENESS engine = c_void_p() ret = arcsoft_face_func.init_engine(arcsoft_face_func.ASF_DETECT_MODE_IMAGE, arcsoft_face_func.ArcSoftFaceOrientPriority.ASF_OP_0_ONLY.value[0], 30, 10, mask, byref(engine)) if ret == 0: print("初始化成功") else: print("初始化失敗:", ret)
c.人臉檢測
本文使用了opencv讀圖,兼容性更好,而且自定義的數據結構記錄圖片信息,注意 ArcFace C++ SDK 要求傳入的圖像寬度須要是4的倍數,下面作了裁剪。blog
class Image: def __init__(self): self.width = 0 self.height = 0 self.imageData = None def load_image(file_path): img = cv2.imread(file_path) sp = img.shape img = cv2.resize(img, (sp[1]//4*4, sp[0]))# 四字節對齊 image = Image() image.width = img.shape[1] image.height = img.shape[0] image.imageData = img return image ###################### 人臉檢測 ################################## image1 = load_image(r"1.jpg") image_bytes = bytes(image1.imageData) image_ubytes = cast(image_bytes, c_ubyte_p) detect_faces = ASFMultiFaceInfo() ret = arcsoft_face_func.detect_face( engine, image1.width, image1.height, arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8, image_ubytes, byref(detect_faces) ) if ret == 0: print("檢測人臉成功") else: print("檢測人臉失敗:", ret)
d.特徵提取
特徵提取只支持單人臉,所以作了人臉處理操做,而且須要及時將提取的人臉特徵拷貝一份,不然會被覆蓋。
single_face1 = ASFSingleFaceInfo() single_face1.faceRect = detect_faces.faceRect[0] single_face1.faceOrient = detect_faces.faceOrient[0] face_feature = ASFFaceFeature() ret = arcsoft_face_func.extract_feature( engine, image1.width, image1.height, arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8, image_ubytes, single_face1, byref(face_feature) ) if ret == 0: print("提取特徵1成功") else: print("提取特徵1失敗:", ret) feature1 = ASFFaceFeature() feature1.featureSize = face_feature.featureSize feature1.feature = malloc(feature1.featureSize) memcpy(c_void_p(feature1.feature), c_void_p(face_feature.feature), feature1.featureSize)
e.特徵比對
按照前文所述再提取一張人臉的特徵,便可以進行下面的人臉特徵比對操做
compare_threshold = c_float() ret = arcsoft_face_func.compare_feature( engine, feature1, feature2, compare_threshold ) free(c_void_p(feature1.feature)) free(c_void_p(feature2.feature)) if ret == 0: print("特徵比對成功,類似度:", compare_threshold.value) else: print("特徵比對失敗:", ret)
f.年齡、性別、3D Angle
process接口目前提供了 年齡、性別、3D Angle、活體檢測, 但年齡、性別、3D Angle支持多人臉,而活體只支持單人臉,所以下面分別處理。
process_mask = arcsoft_face_func.ASF_AGE | \ arcsoft_face_func.ASF_GENDER | \ arcsoft_face_func.ASF_FACE3DANGLE ret = arcsoft_face_func.process( engine, image1.width, image1.height, arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8, image_ubytes, byref(detect_faces), c_int32(process_mask) ) if ret == 0: print("process成功") else: print("process失敗:", ret) ######################## Age ################################ age_info = ASFAgeInfo() ret = arcsoft_face_func.get_age(engine, byref(age_info)) if ret == 0: print("get_age 成功") age_ptr = cast(age_info.ageArray, POINTER(c_int)) for i in range(age_info.num): print("face", i, "age:", age_ptr[i]) else: print("get_age 失敗:", ret) ####################### Gender ################################# gender_info = ASFGenderInfo() ret = arcsoft_face_func.get_gender(engine, byref(gender_info)) if ret == 0: print("get_gender 成功") gender_ptr = cast(gender_info.genderArray, POINTER(c_int)) for i in range(gender_info.num): print("face", i, "gender:", "女性" if (gender_ptr[i] == 1) else ( "男性" if (gender_ptr[i] == 0) else "未知" )) else: print("get_gender 失敗:", ret) ####################### 3D Angle ################################# angle_info = ASFFace3DAngle() ret = arcsoft_face_func.get_3d_angle(engine, byref(angle_info)) if ret == 0: print("get_3d_angle 成功") roll_ptr = cast(angle_info.roll, POINTER(c_float)) yaw_ptr = cast(angle_info.yaw, POINTER(c_float)) pitch_ptr = cast(angle_info.pitch, POINTER(c_float)) status_ptr = cast(angle_info.status, POINTER(c_int32)) for i in range(angle_info.num): print("face", i, "roll:", roll_ptr[i], "yaw:", yaw_ptr[i], "pitch:", pitch_ptr[i], "status:", "正常" if status_ptr[i] == 0 else "出錯") else: print("get_3d_angle 失敗:", ret)
g.RGB活體
在活體檢測以前建議按照實際場景設置活體閾值,不設置即便用默認閾值,這裏設置了RGB活體的閾值爲0.75。並將檢測的多人臉分別轉爲單張人臉的參數傳到接口中。
######################### 活體閾值設置 ############################### threshold_param = ASFLivenessThreshold() threshold_param.thresholdmodel_BGR = 0.75 ret = arcsoft_face_func.set_liveness_param(engine,threshold_param) if ret == 0: print("set_liveness_param成功") else: print("set_liveness_param 失敗:", ret) temp_face_info = ASFMultiFaceInfo() temp_face_info.faceNum = 1 LP_MRECT = POINTER(MRECT) temp_face_info.faceRect = LP_MRECT(MRECT(malloc(sizeof(MRECT)))) LP_c_long = POINTER(c_long) temp_face_info.faceOrient = LP_c_long(c_long(malloc(sizeof(c_long)))) for i in range(detect_faces.faceNum): temp_face_info.faceRect[0] = detect_faces.faceRect[i] temp_face_info.faceOrient[0] = detect_faces.faceOrient[i] ret = arcsoft_face_func.process( engine, image1.width, image1.height, arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8, image_ubytes, byref(temp_face_info), c_int32(arcsoft_face_func.ASF_LIVENESS) ) if ret == 0: print("process成功") else: print("process失敗:", ret) ## RGB活體檢測 ret = arcsoft_face_func.process( engine, image1.width, image1.height, arcsoft_face_func.ASVL_PAF_RGB24_B8G8R8, image_ubytes, byref(temp_face_info), c_int32(arcsoft_face_func.ASF_LIVENESS) ) if ret == 0: print("process成功") else: print("process失敗:", ret) liveness_info = ASFLivenessInfo() ret = arcsoft_face_func.get_liveness_info(engine, byref(liveness_info)) if ret == 0: print("get_liveness_info 成功") liveness_ptr = cast(liveness_info.isLive, POINTER(c_int)) print("face", i, "liveness:", "非真人" if (liveness_ptr[0] == 0) else ( "真人" if (liveness_ptr[0] == 1) else ( "不肯定" if (liveness_ptr[0] == -1) else ( "傳入人臉數>1" if (liveness_ptr[0] == -2) else (liveness_ptr[0]) ) ) )) else: print("get_liveness_info 失敗:", ret)