數據庫鎖定機制簡單來講,就是數據庫爲了保證數據的一致性,而使各類共享資源在被併發訪問變得有序所設計的一種規則。對於任何一種數據庫來講都須要有相應的鎖定機制,因此MySQL天然也不能例外。MySQL數據庫因爲其自身架構的特色,存在多種數據存儲引擎,每種存儲引擎所針對的應用場景特色都不太同樣,爲了知足各自特定應用場景的需求,每種存儲引擎的鎖定機制都是爲各自所面對的特定場景而優化設計,因此各存儲引擎的鎖定機制也有較大區別。MySQL各存儲引擎使用了三種類型(級別)的鎖定機制:表級鎖定,行級鎖定和頁級鎖定。
1.表級鎖定(table-level)
表級別的鎖定是MySQL各存儲引擎中最大顆粒度的鎖定機制。該鎖定機制最大的特色是實現邏輯很是簡單,帶來的系統負面影響最小。因此獲取鎖和釋放鎖的速度很快。因爲表級鎖一次會將整個表鎖定,因此能夠很好的避免困擾咱們的死鎖問題。
固然,鎖定顆粒度大所帶來最大的負面影響就是出現鎖定資源爭用的機率也會最高,導致並大度大打折扣。
使用表級鎖定的主要是MyISAM,MEMORY,CSV等一些非事務性存儲引擎。
2.行級鎖定(row-level)
行級鎖定最大的特色就是鎖定對象的顆粒度很小,也是目前各大數據庫管理軟件所實現的鎖定顆粒度最小的。因爲鎖定顆粒度很小,因此發生鎖定資源爭用的機率也最小,可以給予應用程序儘量大的併發處理能力而提升一些須要高併發應用系統的總體性能。
雖然可以在併發處理能力上面有較大的優點,可是行級鎖定也所以帶來了很多弊端。因爲鎖定資源的顆粒度很小,因此每次獲取鎖和釋放鎖須要作的事情也更多,帶來的消耗天然也就更大了。此外,行級鎖定也最容易發生死鎖。
使用行級鎖定的主要是InnoDB存儲引擎。
3.頁級鎖定(page-level)
頁級鎖定是MySQL中比較獨特的一種鎖定級別,在其餘數據庫管理軟件中也並非太常見。頁級鎖定的特色是鎖定顆粒度介於行級鎖定與表級鎖之間,因此獲取鎖定所須要的資源開銷,以及所能提供的併發處理能力也一樣是介於上面兩者之間。另外,頁級鎖定和行級鎖定同樣,會發生死鎖。
在數據庫實現資源鎖定的過程當中,隨着鎖定資源顆粒度的減少,鎖定相同數據量的數據所須要消耗的內存數量是愈來愈多的,實現算法也會愈來愈複雜。不過,隨着鎖定資源顆粒度的減少,應用程序的訪問請求遇到鎖等待的可能性也會隨之下降,系統總體併發度也隨之提高。
使用頁級鎖定的主要是BerkeleyDB存儲引擎。
總的來講,MySQL這3種鎖的特性可大體概括以下:
表級鎖:開銷小,加鎖快;不會出現死鎖;鎖定粒度大,發生鎖衝突的機率最高,併發度最低;
行級鎖:開銷大,加鎖慢;會出現死鎖;鎖定粒度最小,發生鎖衝突的機率最低,併發度也最高;
頁面鎖:開銷和加鎖時間界於表鎖和行鎖之間;會出現死鎖;鎖定粒度界於表鎖和行鎖之間,併發度通常。
適用:從鎖的角度來講,表級鎖更適合於以查詢爲主,只有少許按索引條件更新數據的應用,如Web應用;而行級鎖則更適合於有大量按索引條件併發更新少許不一樣數據,同時又有併發查詢的應用,如一些在線事務處理(OLTP)系統。html
因爲MyISAM存儲引擎使用的鎖定機制徹底是由MySQL提供的表級鎖定實現,因此下面咱們將以MyISAM存儲引擎做爲示例存儲引擎。
1.MySQL表級鎖的鎖模式
MySQL的表級鎖有兩種模式:表共享讀鎖(Table Read Lock)和表獨佔寫鎖(Table Write Lock)。鎖模式的兼容性:
對MyISAM表的讀操做,不會阻塞其餘用戶對同一表的讀請求,但會阻塞對同一表的寫請求;
對MyISAM表的寫操做,則會阻塞其餘用戶對同一表的讀和寫操做;
MyISAM表的讀操做與寫操做之間,以及寫操做之間是串行的。當一個線程得到對一個表的寫鎖後,只有持有鎖的線程能夠對錶進行更新操做。其餘線程的讀、寫操做都會等待,直到鎖被釋放爲止。
2.如何加表鎖
MyISAM在執行查詢語句(SELECT)前,會自動給涉及的全部表加讀鎖,在執行更新操做(UPDATE、DELETE、INSERT等)前,會自動給涉及的表加寫鎖,這個過程並不須要用戶干預,所以,用戶通常不須要直接用LOCK TABLE命令給MyISAM表顯式加鎖。
3.MyISAM表鎖優化建議
對於MyISAM存儲引擎,雖然使用表級鎖定在鎖定實現的過程當中比實現行級鎖定或者頁級鎖所帶來的附加成本都要小,鎖定自己所消耗的資源也是最少。可是因爲鎖定的顆粒度比較到,因此形成鎖定資源的爭用狀況也會比其餘的鎖定級別都要多,從而在較大程度上會下降併發處理能力。因此,在優化MyISAM存儲引擎鎖定問題的時候,最關鍵的就是如何讓其提升併發度。因爲鎖定級別是不可能改變的了,因此咱們首先須要儘量讓鎖定的時間變短,而後就是讓可能併發進行的操做盡量的併發。
(1)查詢表級鎖爭用狀況
MySQL內部有兩組專門的狀態變量記錄系統內部鎖資源爭用狀況:mysql
mysql> show status like 'table%'; +----------------------------+---------+ | Variable_name | Value | +----------------------------+---------+ | Table_locks_immediate | 100 | | Table_locks_waited | 11 | +----------------------------+---------+
這裏有兩個狀態變量記錄MySQL內部表級鎖定的狀況,兩個變量說明以下:
Table_locks_immediate:產生表級鎖定的次數;
Table_locks_waited:出現表級鎖定爭用而發生等待的次數;
兩個狀態值都是從系統啓動後開始記錄,出現一次對應的事件則數量加1。若是這裏的Table_locks_waited狀態值比較高,那麼說明系統中表級鎖定爭用現象比較嚴重,就須要進一步分析爲何會有較多的鎖定資源爭用了。
(2)縮短鎖定時間
如何讓鎖定時間儘量的短呢?惟一的辦法就是讓咱們的Query執行時間儘量的短。
a)盡兩減小大的複雜Query,將複雜Query分拆成幾個小的Query分佈進行;
b)儘量的創建足夠高效的索引,讓數據檢索更迅速;
c)儘可能讓MyISAM存儲引擎的表只存放必要的信息,控制字段類型;
d)利用合適的機會優化MyISAM表數據文件。
(3)分離能並行的操做
說到MyISAM的表鎖,並且是讀寫互相阻塞的表鎖,可能有些人會認爲在MyISAM存儲引擎的表上就只能是徹底的串行化,沒辦法再並行了。你們不要忘記了,MyISAM的存儲引擎還有一個很是有用的特性,那就是ConcurrentInsert(併發插入)的特性。
MyISAM存儲引擎有一個控制是否打開Concurrent Insert功能的參數選項:concurrent_insert,能夠設置爲0,1或者2。三個值的具體說明以下:
concurrent_insert=2,不管MyISAM表中有沒有空洞,都容許在表尾併發插入記錄;
concurrent_insert=1,若是MyISAM表中沒有空洞(即表的中間沒有被刪除的行),MyISAM容許在一個進程讀表的同時,另外一個進程從表尾插入記錄。這也是MySQL的默認設置;
concurrent_insert=0,不容許併發插入。
能夠利用MyISAM存儲引擎的併發插入特性,來解決應用中對同一表查詢和插入的鎖爭用。例如,將concurrent_insert系統變量設爲2,老是容許併發插入;同時,經過按期在系統空閒時段執行OPTIMIZE TABLE語句來整理空間碎片,收回因刪除記錄而產生的中間空洞。
(4)合理利用讀寫優先級
MyISAM存儲引擎的是讀寫互相阻塞的,那麼,一個進程請求某個MyISAM表的讀鎖,同時另外一個進程也請求同一表的寫鎖,MySQL如何處理呢?
答案是寫進程先得到鎖。不只如此,即便讀請求先到鎖等待隊列,寫請求後到,寫鎖也會插到讀鎖請求以前。
這是由於MySQL的表級鎖定對於讀和寫是有不一樣優先級設定的,默認狀況下是寫優先級要大於讀優先級。
因此,若是咱們能夠根據各自系統環境的差別決定讀與寫的優先級:
經過執行命令SET LOW_PRIORITY_UPDATES=1,使該鏈接讀比寫的優先級高。若是咱們的系統是一個以讀爲主,能夠設置此參數,若是以寫爲主,則不用設置;
經過指定INSERT、UPDATE、DELETE語句的LOW_PRIORITY屬性,下降該語句的優先級。
雖然上面方法都是要麼更新優先,要麼查詢優先的方法,但仍是能夠用其來解決查詢相對重要的應用(如用戶登陸系統)中,讀鎖等待嚴重的問題。
另外,MySQL也提供了一種折中的辦法來調節讀寫衝突,即給系統參數max_write_lock_count設置一個合適的值,當一個表的讀鎖達到這個值後,MySQL就暫時將寫請求的優先級下降,給讀進程必定得到鎖的機會。
這裏還要強調一點:一些須要長時間運行的查詢操做,也會使寫進程「餓死」,所以,應用中應儘可能避免出現長時間運行的查詢操做,不要總想用一條SELECT語句來解決問題,由於這種看似巧妙的SQL語句,每每比較複雜,執行時間較長,在可能的狀況下能夠經過使用中間表等措施對SQL語句作必定的「分解」,使每一步查詢都能在較短期完成,從而減小鎖衝突。若是複雜查詢不可避免,應儘可能安排在數據庫空閒時段執行,好比一些按期統計能夠安排在夜間執行。算法
行級鎖定不是MySQL本身實現的鎖定方式,而是由其餘存儲引擎本身所實現的,如廣爲你們所知的InnoDB存儲引擎,以及MySQL的分佈式存儲引擎NDBCluster等都是實現了行級鎖定。考慮到行級鎖定君由各個存儲引擎自行實現,並且具體實現也各有差異,而InnoDB是目前事務型存儲引擎中使用最爲普遍的存儲引擎,因此這裏咱們就主要分析一下InnoDB的鎖定特性。
1.InnoDB鎖定模式及實現機制
考慮到行級鎖定均由各個存儲引擎自行實現,並且具體實現也各有差異,而InnoDB是目前事務型存儲引擎中使用最爲普遍的存儲引擎,因此這裏咱們就主要分析一下InnoDB的鎖定特性。
總的來講,InnoDB的鎖定機制和Oracle數據庫有很多類似之處。InnoDB的行級鎖定一樣分爲兩種類型,共享鎖和排他鎖,而在鎖定機制的實現過程當中爲了讓行級鎖定和表級鎖定共存,InnoDB也一樣使用了意向鎖(表級鎖定)的概念,也就有了意向共享鎖和意向排他鎖這兩種。
當一個事務須要給本身須要的某個資源加鎖的時候,若是遇到一個共享鎖正鎖定着本身須要的資源的時候,本身能夠再加一個共享鎖,不過不能加排他鎖。可是,若是遇到本身須要鎖定的資源已經被一個排他鎖佔有以後,則只能等待該鎖定釋放資源以後本身才能獲取鎖定資源並添加本身的鎖定。而意向鎖的做用就是當一個事務在須要獲取資源鎖定的時候,若是遇到本身須要的資源已經被排他鎖佔用的時候,該事務能夠須要鎖定行的表上面添加一個合適的意向鎖。若是本身須要一個共享鎖,那麼就在表上面添加一個意向共享鎖。而若是本身須要的是某行(或者某些行)上面添加一個排他鎖的話,則先在表上面添加一個意向排他鎖。意向共享鎖能夠同時並存多個,可是意向排他鎖同時只能有一個存在。因此,能夠說InnoDB的鎖定模式實際上能夠分爲四種:共享鎖(S),排他鎖(X),意向共享鎖(IS)和意向排他鎖(IX),咱們能夠經過如下表格來總結上面這四種所的共存邏輯關係:
sql
若是一個事務請求的鎖模式與當前的鎖兼容,InnoDB就將請求的鎖授予該事務;反之,若是二者不兼容,該事務就要等待鎖釋放。
意向鎖是InnoDB自動加的,不需用戶干預。對於UPDATE、DELETE和INSERT語句,InnoDB會自動給涉及數據集加排他鎖(X);對於普通SELECT語句,InnoDB不會加任何鎖;事務能夠經過如下語句顯示給記錄集加共享鎖或排他鎖。數據庫
共享鎖(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他鎖(X):SELECT * FROM table_name WHERE ... FOR UPDATE
用SELECT ... IN SHARE MODE得到共享鎖,主要用在須要數據依存關係時來確認某行記錄是否存在,並確保沒有人對這個記錄進行UPDATE或者DELETE操做。
可是若是當前事務也須要對該記錄進行更新操做,則頗有可能形成死鎖,對於鎖定行記錄後須要進行更新操做的應用,應該使用SELECT... FOR UPDATE方式得到排他鎖。
2.InnoDB行鎖實現方式
InnoDB行鎖是經過給索引上的索引項加鎖來實現的,只有經過索引條件檢索數據,InnoDB才使用行級鎖,不然,InnoDB將使用表鎖
在實際應用中,要特別注意InnoDB行鎖的這一特性,否則的話,可能致使大量的鎖衝突,從而影響併發性能。下面經過一些實際例子來加以說明。
(1)在不經過索引條件查詢的時候,InnoDB確實使用的是表鎖,而不是行鎖。
(2)因爲MySQL的行鎖是針對索引加的鎖,不是針對記錄加的鎖,因此雖然是訪問不一樣行的記錄,可是若是是使用相同的索引鍵,是會出現鎖衝突的。
(3)當表有多個索引的時候,不一樣的事務可使用不一樣的索引鎖定不一樣的行,另外,不管是使用主鍵索引、惟一索引或普通索引,InnoDB都會使用行鎖來對數據加鎖。
(4)即使在條件中使用了索引字段,可是否使用索引來檢索數據是由MySQL經過判斷不一樣執行計劃的代價來決定的,若是MySQL認爲全表掃描效率更高,好比對一些很小的表,它就不會使用索引,這種狀況下InnoDB將使用表鎖,而不是行鎖。所以,在分析鎖衝突時,別忘了檢查SQL的執行計劃,以確認是否真正使用了索引。
3.間隙鎖(Next-Key鎖)
當咱們用範圍條件而不是相等條件檢索數據,並請求共享或排他鎖時,InnoDB會給符合條件的已有數據記錄的索引項加鎖;
對於鍵值在條件範圍內但並不存在的記錄,叫作「間隙(GAP)」,InnoDB也會對這個「間隙」加鎖,這種鎖機制就是所謂的間隙鎖(Next-Key鎖)。
例:
假如emp表中只有101條記錄,其empid的值分別是 1,2,...,100,101,下面的SQL:性能優化
mysql> select * from emp where empid > 100 for update;
是一個範圍條件的檢索,InnoDB不只會對符合條件的empid值爲101的記錄加鎖,也會對empid大於101(這些記錄並不存在)的「間隙」加鎖。
InnoDB使用間隙鎖的目的:
(1)防止幻讀,以知足相關隔離級別的要求。對於上面的例子,要是不使用間隙鎖,若是其餘事務插入了empid大於100的任何記錄,那麼本事務若是再次執行上述語句,就會發生幻讀;
(2)爲了知足其恢復和複製的須要。
很顯然,在使用範圍條件檢索並鎖定記錄時,即便某些不存在的鍵值也會被無辜的鎖定,而形成在鎖定的時候沒法插入鎖定鍵值範圍內的任何數據。在某些場景下這可能會對性能形成很大的危害。
除了間隙鎖給InnoDB帶來性能的負面影響以外,經過索引實現鎖定的方式還存在其餘幾個較大的性能隱患:
(1)當Query沒法利用索引的時候,InnoDB會放棄使用行級別鎖定而改用表級別的鎖定,形成併發性能的下降;
(2)當Query使用的索引並不包含全部過濾條件的時候,數據檢索使用到的索引鍵所只想的數據可能有部分並不屬於該Query的結果集的行列,可是也會被鎖定,由於間隙鎖鎖定的是一個範圍,而不是具體的索引鍵;
(3)當Query在使用索引定位數據的時候,若是使用的索引鍵同樣但訪問的數據行不一樣的時候(索引只是過濾條件的一部分),同樣會被鎖定。
所以,在實際應用開發中,尤爲是併發插入比較多的應用,咱們要儘可能優化業務邏輯,儘可能使用相等條件來訪問更新數據,避免使用範圍條件。
還要特別說明的是,InnoDB除了經過範圍條件加鎖時使用間隙鎖外,若是使用相等條件請求給一個不存在的記錄加鎖,InnoDB也會使用間隙鎖。
4.死鎖
上文講過,MyISAM表鎖是deadlock free的,這是由於MyISAM老是一次得到所需的所有鎖,要麼所有知足,要麼等待,所以不會出現死鎖。但在InnoDB中,除單個SQL組成的事務外,鎖是逐步得到的,當兩個事務都須要得到對方持有的排他鎖才能繼續完成事務,這種循環鎖等待就是典型的死鎖。
在InnoDB的事務管理和鎖定機制中,有專門檢測死鎖的機制,會在系統中產生死鎖以後的很短期內就檢測到該死鎖的存在。當InnoDB檢測到系統中產生了死鎖以後,InnoDB會經過相應的判斷來選這產生死鎖的兩個事務中較小的事務來回滾,而讓另一個較大的事務成功完成。
那InnoDB是以什麼來爲標準斷定事務的大小的呢?MySQL官方手冊中也提到了這個問題,實際上在InnoDB發現死鎖以後,會計算出兩個事務各自插入、更新或者刪除的數據量來斷定兩個事務的大小。也就是說哪一個事務所改變的記錄條數越多,在死鎖中就越不會被回滾掉。
可是有一點須要注意的就是,當產生死鎖的場景中涉及到不止InnoDB存儲引擎的時候,InnoDB是沒辦法檢測到該死鎖的,這時候就只能經過鎖定超時限制參數InnoDB_lock_wait_timeout來解決。
須要說明的是,這個參數並非只用來解決死鎖問題,在併發訪問比較高的狀況下,若是大量事務因沒法當即得到所需的鎖而掛起,會佔用大量計算機資源,形成嚴重性能問題,甚至拖跨數據庫。咱們經過設置合適的鎖等待超時閾值,能夠避免這種狀況發生。
一般來講,死鎖都是應用設計的問題,經過調整業務流程、數據庫對象設計、事務大小,以及訪問數據庫的SQL語句,絕大部分死鎖均可以免。下面就經過實例來介紹幾種避免死鎖的經常使用方法:
(1)在應用中,若是不一樣的程序會併發存取多個表,應儘可能約定以相同的順序來訪問表,這樣能夠大大下降產生死鎖的機會。
(2)在程序以批量方式處理數據的時候,若是事先對數據排序,保證每一個線程按固定的順序來處理記錄,也能夠大大下降出現死鎖的可能。
(3)在事務中,若是要更新記錄,應該直接申請足夠級別的鎖,即排他鎖,而不該先申請共享鎖,更新時再申請排他鎖,由於當用戶申請排他鎖時,其餘事務可能又已經得到了相同記錄的共享鎖,從而形成鎖衝突,甚至死鎖。
(4)在REPEATABLE-READ隔離級別下,若是兩個線程同時對相同條件記錄用SELECT...FOR UPDATE加排他鎖,在沒有符合該條件記錄狀況下,兩個線程都會加鎖成功。程序發現記錄尚不存在,就試圖插入一條新記錄,若是兩個線程都這麼作,就會出現死鎖。這種狀況下,將隔離級別改爲READ COMMITTED,就可避免問題。
(5)當隔離級別爲READ COMMITTED時,若是兩個線程都先執行SELECT...FOR UPDATE,判斷是否存在符合條件的記錄,若是沒有,就插入記錄。此時,只有一個線程能插入成功,另外一個線程會出現鎖等待,當第1個線程提交後,第2個線程會因主鍵重出錯,但雖然這個線程出錯了,卻會得到一個排他鎖。這時若是有第3個線程又來申請排他鎖,也會出現死鎖。對於這種狀況,能夠直接作插入操做,而後再捕獲主鍵重異常,或者在遇到主鍵重錯誤時,老是執行ROLLBACK釋放得到的排他鎖。
5.何時使用表鎖
對於InnoDB表,在絕大部分狀況下都應該使用行級鎖,由於事務和行鎖每每是咱們之因此選擇InnoDB表的理由。但在個別特殊事務中,也能夠考慮使用表級鎖:
(1)事務須要更新大部分或所有數據,表又比較大,若是使用默認的行鎖,不只這個事務執行效率低,並且可能形成其餘事務長時間鎖等待和鎖衝突,這種狀況下能夠考慮使用表鎖來提升該事務的執行速度。
(2)事務涉及多個表,比較複雜,極可能引發死鎖,形成大量事務回滾。這種狀況也能夠考慮一次性鎖定事務涉及的表,從而避免死鎖、減小數據庫因事務回滾帶來的開銷。
固然,應用中這兩種事務不能太多,不然,就應該考慮使用MyISAM表了。
在InnoDB下,使用表鎖要注意如下兩點。
(1)使用LOCK TABLES雖然能夠給InnoDB加表級鎖,但必須說明的是,表鎖不是由InnoDB存儲引擎層管理的,而是由其上一層──MySQL Server負責的,僅當autocommit=0、InnoDB_table_locks=1(默認設置)時,InnoDB層才能知道MySQL加的表鎖,MySQL Server也才能感知InnoDB加的行鎖,這種狀況下,InnoDB才能自動識別涉及表級鎖的死鎖,不然,InnoDB將沒法自動檢測並處理這種死鎖。
(2)在用 LOCK TABLES對InnoDB表加鎖時要注意,要將AUTOCOMMIT設爲0,不然MySQL不會給表加鎖;事務結束前,不要用UNLOCK TABLES釋放表鎖,由於UNLOCK TABLES會隱含地提交事務;COMMIT或ROLLBACK並不能釋放用LOCK TABLES加的表級鎖,必須用UNLOCK TABLES釋放表鎖。正確的方式見以下語句:
例如,若是須要寫表t1並從表t讀,能夠按以下作:服務器
SET AUTOCOMMIT=0; LOCK TABLES t1 WRITE, t2 READ, ...; [do something with tables t1 and t2 here]; COMMIT; UNLOCK TABLES;
6.InnoDB行鎖優化建議
InnoDB存儲引擎因爲實現了行級鎖定,雖然在鎖定機制的實現方面所帶來的性能損耗可能比表級鎖定會要更高一些,可是在總體併發處理能力方面要遠遠優於MyISAM的表級鎖定的。當系統併發量較高的時候,InnoDB的總體性能和MyISAM相比就會有比較明顯的優點了。可是,InnoDB的行級鎖定一樣也有其脆弱的一面,當咱們使用不當的時候,可能會讓InnoDB的總體性能表現不只不能比MyISAM高,甚至可能會更差。
(1)要想合理利用InnoDB的行級鎖定,作到揚長避短,咱們必須作好如下工做:
a)儘量讓全部的數據檢索都經過索引來完成,從而避免InnoDB由於沒法經過索引鍵加鎖而升級爲表級鎖定;
b)合理設計索引,讓InnoDB在索引鍵上面加鎖的時候儘量準確,儘量的縮小鎖定範圍,避免形成沒必要要的鎖定而影響其餘Query的執行;
c)儘量減小基於範圍的數據檢索過濾條件,避免由於間隙鎖帶來的負面影響而鎖定了不應鎖定的記錄;
d)儘可能控制事務的大小,減小鎖定的資源量和鎖定時間長度;
e)在業務環境容許的狀況下,儘可能使用較低級別的事務隔離,以減小MySQL由於實現事務隔離級別所帶來的附加成本。
(2)因爲InnoDB的行級鎖定和事務性,因此確定會產生死鎖,下面是一些比較經常使用的減小死鎖產生機率的小建議:
a)相似業務模塊中,儘量按照相同的訪問順序來訪問,防止產生死鎖;
b)在同一個事務中,儘量作到一次鎖定所須要的全部資源,減小死鎖產生機率;
c)對於很是容易產生死鎖的業務部分,能夠嘗試使用升級鎖定顆粒度,經過表級鎖定來減小死鎖產生的機率。
(3)能夠經過檢查InnoDB_row_lock狀態變量來分析系統上的行鎖的爭奪狀況:架構
mysql> show status like 'InnoDB_row_lock%'; +-------------------------------+-------+ | Variable_name | Value | +-------------------------------+-------+ | InnoDB_row_lock_current_waits | 0 | | InnoDB_row_lock_time | 0 | | InnoDB_row_lock_time_avg | 0 | | InnoDB_row_lock_time_max | 0 | | InnoDB_row_lock_waits | 0 | +-------------------------------+-------+
InnoDB 的行級鎖定狀態變量不只記錄了鎖定等待次數,還記錄了鎖定總時長,每次平均時長,以及最大時長,此外還有一個非累積狀態量顯示了當前正在等待鎖定的等待數量。對各個狀態量的說明以下:
InnoDB_row_lock_current_waits:當前正在等待鎖定的數量;
InnoDB_row_lock_time:從系統啓動到如今鎖定總時間長度;
InnoDB_row_lock_time_avg:每次等待所花平均時間;
InnoDB_row_lock_time_max:從系統啓動到如今等待最常的一次所花的時間;
InnoDB_row_lock_waits:系統啓動後到如今總共等待的次數;
對於這5個狀態變量,比較重要的主要是InnoDB_row_lock_time_avg(等待平均時長),InnoDB_row_lock_waits(等待總次數)以及InnoDB_row_lock_time(等待總時長)這三項。尤爲是當等待次數很高,並且每次等待時長也不小的時候,咱們就須要分析系統中爲何會有如此多的等待,而後根據分析結果着手指定優化計劃。
若是發現鎖爭用比較嚴重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比較高,還能夠經過設置InnoDB Monitors 來進一步觀察發生鎖衝突的表、數據行等,並分析鎖爭用的緣由。
鎖衝突的表、數據行等,並分析鎖爭用的緣由。具體方法以下:併發
mysql> create table InnoDB_monitor(a INT) engine=InnoDB;
而後就能夠用下面的語句來進行查看:分佈式
mysql> show engine InnoDB status;
監視器能夠經過發出下列語句來中止查看:
mysql> drop table InnoDB_monitor;
設置監視器後,會有詳細的當前鎖等待的信息,包括表名、鎖類型、鎖定記錄的狀況等,便於進行進一步的分析和問題的肯定。可能會有讀者朋友問爲何要先建立一個叫InnoDB_monitor的表呢?由於建立該表實際上就是告訴InnoDB咱們開始要監控他的細節狀態了,而後InnoDB就會將比較詳細的事務以及鎖定信息記錄進入MySQL的errorlog中,以便咱們後面作進一步分析使用。打開監視器之後,默認狀況下每15秒會向日志中記錄監控的內容,若是長時間打開會致使.err文件變得很是的巨大,因此用戶在確認問題緣由以後,要記得刪除監控表以關閉監視器,或者經過使用「--console」選項來啓動服務器以關閉寫日誌文件。
查看更多:
MySQL優化
MySQL各存儲引擎
MySQL事務
MySQL索引類型參考資料:《MySQL性能優化與架構設計》《深刻淺出MySQL》