JavaShuo
欄目
標籤
[ICML19] Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
時間 2020-12-24
原文
原文鏈接
谷歌等一篇名爲《挑戰無監督分離式表徵的常見假設》的論文,表明 (沒有歸納偏置的) 無監督方法學不到可靠的分離式表徵 (Disentangled Representations) 。本篇是ICML2019的兩篇best paper之一。 Abstract 分離式表徵的無監督學習背後的關鍵思想是,真實世界的數據是由幾個解釋變量生成的,這些變量可以用無監督學習算法恢復。本文對這一領域的最新進展進行了冷靜
>>阅读原文<<
相關文章
1.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations學習與理解
2.
[MICCAI2019]Unsupervised Domain Adaptation via Disentangled Representations
3.
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver
4.
[MICCAI2019] Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-M
5.
A Simple Framework for Contrastive Learning of Visual Representations
6.
Data Augmenting Contrastive Learning of Speech Representations in the Time Domain
7.
【論文筆記】Joint Unsupervised Learning of Deep Representations and Image Clusters
8.
Learning Distributed Representations of Sentences from...
9.
[ML] Machine Learning in the Common Infrastructure ecosystem
10.
Unsupervised Learning of Stereo Matching
更多相關文章...
•
SQL IN 操作符
-
SQL 教程
•
Swift for-in 循環
-
Swift 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java 8 Stream 教程
相關標籤/搜索
representations
assumptions
unsupervised
challenging
common
learning
for...of
for..of
easyui+common
common@2.3.1
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
springboot在一個項目中啓動多個核心啓動類
2.
Spring Boot日誌-3 ------>SLF4J與別的框架整合
3.
SpringMVC-Maven(一)
4.
idea全局設置
5.
將word選擇題轉換成Excel
6.
myeclipse工程中library 和 web-inf下lib的區別
7.
Java入門——第一個Hello Word
8.
在chrome安裝vue devtools(以及安裝過程中出現的錯誤)
9.
Jacob線上部署及多項目部署問題處理
10.
1.初識nginx
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations學習與理解
2.
[MICCAI2019]Unsupervised Domain Adaptation via Disentangled Representations
3.
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver
4.
[MICCAI2019] Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-M
5.
A Simple Framework for Contrastive Learning of Visual Representations
6.
Data Augmenting Contrastive Learning of Speech Representations in the Time Domain
7.
【論文筆記】Joint Unsupervised Learning of Deep Representations and Image Clusters
8.
Learning Distributed Representations of Sentences from...
9.
[ML] Machine Learning in the Common Infrastructure ecosystem
10.
Unsupervised Learning of Stereo Matching
>>更多相關文章<<