JavaShuo
欄目
標籤
[MICCAI2019] Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-M
時間 2021-01-02
欄目
HTML
简体版
原文
原文鏈接
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation 作者:Junlin Yang,yale Intro CT便宜快速,但有輻射且對比度低;MRI對比度高,無輻射,但成本高,不易得到。在實際治療中,CT和MRI都需要,且需要對
>>阅读原文<<
相關文章
1.
[MICCAI2019]Unsupervised Domain Adaptation via Disentangled Representations
2.
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver
3.
【論文筆記】Unsupervised Domain-Specific Deblurring via Disentangled Representations
4.
[論文筆記]Unsupervised Domain-Specific Deblurring via Disentangled Representations(CVPR2019)
5.
[MICCAI2019]Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation
6.
A DIRT-T APPROACH TO UNSUPERVISED DOMAIN ADAPTATION
7.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
8.
Re-weighted adversarial adaptation network for unsupervised domain adaptation
9.
Geodesic flow kernel for unsupervised domain adaptation
10.
Unsupervised Domain Adaptation by Backpropagation(2015)
更多相關文章...
•
ASP Application 對象
-
ASP 教程
•
ASP Application 對象
-
ASP 教程
•
使用阿里雲OSS+CDN部署前端頁面與加速靜態資源
•
Tomcat學習筆記(史上最全tomcat學習筆記)
相關標籤/搜索
representations
adaptation
unsupervised
domain
application
iframe+domain
to@8
application@icon
to......443
8.application
HTML
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
「插件」Runner更新Pro版,幫助設計師遠離996
2.
錯誤 707 Could not load file or assembly ‘Newtonsoft.Json, Version=12.0.0.0, Culture=neutral, PublicKe
3.
Jenkins 2018 報告速覽,Kubernetes使用率躍升235%!
4.
TVI-Android技術篇之註解Annotation
5.
android studio啓動項目
6.
Android的ADIL
7.
Android卡頓的檢測及優化方法彙總(線下+線上)
8.
登錄註冊的業務邏輯流程梳理
9.
NDK(1)創建自己的C/C++文件
10.
小菜的系統框架界面設計-你的評估是我的決策
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[MICCAI2019]Unsupervised Domain Adaptation via Disentangled Representations
2.
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver
3.
【論文筆記】Unsupervised Domain-Specific Deblurring via Disentangled Representations
4.
[論文筆記]Unsupervised Domain-Specific Deblurring via Disentangled Representations(CVPR2019)
5.
[MICCAI2019]Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation
6.
A DIRT-T APPROACH TO UNSUPERVISED DOMAIN ADAPTATION
7.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
8.
Re-weighted adversarial adaptation network for unsupervised domain adaptation
9.
Geodesic flow kernel for unsupervised domain adaptation
10.
Unsupervised Domain Adaptation by Backpropagation(2015)
>>更多相關文章<<