JavaShuo
欄目
標籤
Data Augmenting Contrastive Learning of Speech Representations in the Time Domain
時間 2020-12-24
標籤
語音識別asr
機器學習
深度學習
欄目
HTML
简体版
原文
原文鏈接
Data Augmenting Contrastive Learning of Speech Representations in the Time Domain 1. 論文摘要 依據過去語音片段預測未來片段的CPC方法被證明是一種有效的表徵學習方法,本文作者在CPC算法模型的基礎上, 通過對過去語音片段在時間域上的數據增強(WavAugment) 取得了比其他方法更高效、更好的表徵效果。通過pa
>>阅读原文<<
相關文章
1.
A Simple Framework for Contrastive Learning of Visual Representations
2.
論文寫作解讀:A Simple Framework for Contrastive Learning of Visual Representations
3.
Article Analysis(AA): A Simple Framework for Contrastive Learning of Visual Representations
4.
Deep Temporal Clustering: Fully unsupervised learning of time-domain features
5.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations學習與理解
6.
Exploring the teaching of deep learning in neural networks
7.
[ICML19] Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
8.
Contrastive Learning Of Structured World Models
9.
The Rise of Meta Learning
10.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》筆記
更多相關文章...
•
PHP time() 函數
-
PHP參考手冊
•
SQL IN 操作符
-
SQL 教程
•
JDK13 GA發佈:5大特性解讀
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
speech
contrastive
representations
THE LAST TIME
domain
learning
time
data
DATA+++
for...of
HTML
Spring教程
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
「插件」Runner更新Pro版,幫助設計師遠離996
2.
錯誤 707 Could not load file or assembly ‘Newtonsoft.Json, Version=12.0.0.0, Culture=neutral, PublicKe
3.
Jenkins 2018 報告速覽,Kubernetes使用率躍升235%!
4.
TVI-Android技術篇之註解Annotation
5.
android studio啓動項目
6.
Android的ADIL
7.
Android卡頓的檢測及優化方法彙總(線下+線上)
8.
登錄註冊的業務邏輯流程梳理
9.
NDK(1)創建自己的C/C++文件
10.
小菜的系統框架界面設計-你的評估是我的決策
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
A Simple Framework for Contrastive Learning of Visual Representations
2.
論文寫作解讀:A Simple Framework for Contrastive Learning of Visual Representations
3.
Article Analysis(AA): A Simple Framework for Contrastive Learning of Visual Representations
4.
Deep Temporal Clustering: Fully unsupervised learning of time-domain features
5.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations學習與理解
6.
Exploring the teaching of deep learning in neural networks
7.
[ICML19] Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
8.
Contrastive Learning Of Structured World Models
9.
The Rise of Meta Learning
10.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》筆記
>>更多相關文章<<