歡迎閱讀iOS探索系列(按序閱讀食用效果更加)c++
在上一篇文章iOS探索 淺嘗輒止dyld加載流程輕描淡寫提了一句_objc_init
的_dyld_objc_notify_register
,本文將圍繞它展開探索分析swift
/*********************************************************************** * _objc_init * Bootstrap initialization. Registers our image notifier with dyld. * Called by libSystem BEFORE library initialization time **********************************************************************/
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
// 保存 - libobjc - dyld
// C++ 怎麼去作到通知
// 指針 - 回調 - 函數的地址
// 這裏就是咱們的數據 - images - objc lib
// dyld
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
複製代碼
environ_init()
方法是初始化一系列環境變量,並讀取影響運行時的環境變量數組
// Print OBJC_HELP and OBJC_PRINT_OPTIONS output.
if (PrintHelp || PrintOptions) {
if (PrintHelp) {
_objc_inform("Objective-C runtime debugging. Set variable=YES to enable.");
_objc_inform("OBJC_HELP: describe available environment variables");
if (PrintOptions) {
_objc_inform("OBJC_HELP is set");
}
_objc_inform("OBJC_PRINT_OPTIONS: list which options are set");
}
if (PrintOptions) {
_objc_inform("OBJC_PRINT_OPTIONS is set");
}
for (size_t i = 0; i < sizeof(Settings)/sizeof(Settings[0]); i++) {
const option_t *opt = &Settings[i];
if (PrintHelp) _objc_inform("%s: %s", opt->env, opt->help);
if (PrintOptions && *opt->var) _objc_inform("%s is set", opt->env);
}
}
複製代碼
經過上述源碼中的判斷條件,咱們能夠獲得一些環境變量的描述信息 緩存
OBJC_PRINT_LOAD_METHODS
能夠監控全部的+load
方法,從而處理啓動優化OBJC_DISABLE_NONPOINTER_ISA
能夠控制isa優化
開關,從而優化整個內存結構export OBJC_HELP=1
查看
tls_init()
方法是關於線程key的綁定安全
void tls_init(void) {
#if SUPPORT_DIRECT_THREAD_KEYS
_objc_pthread_key = TLS_DIRECT_KEY;
pthread_key_init_np(TLS_DIRECT_KEY, &_objc_pthread_destroyspecific);
#else
_objc_pthread_key = tls_create(&_objc_pthread_destroyspecific);
#endif
}
複製代碼
static_init()
方法註釋中提到該方法會運行C++靜態構造函數
(只會運行系統級別的構造函數)app
在dyld調用靜態構造函數以前libc
會調用_objc_init
,因此必須本身去實現函數
/*********************************************************************** * static_init * Run C++ static constructor functions. * libc calls _objc_init() before dyld would call our static constructors, * so we have to do it ourselves. **********************************************************************/
static void static_init() {
size_t count;
auto inits = getLibobjcInitializers(&_mh_dylib_header, &count);
for (size_t i = 0; i < count; i++) {
inits[i]();
}
}
複製代碼
lock_init()
方法是個空函數,OC的鎖機制徹底採用C、C++那一套oop
void lock_init(void) {
}
複製代碼
exception_init()
初始化libobjc的異常處理系統,註冊異常處理的回調,從而監控異常的處理post
void exception_init(void) {
old_terminate = std::set_terminate(&_objc_terminate);
}
複製代碼
調用只聲明不實現不做任何處理的方法,就會報錯,來到_objc_terminate
優化
//
// Note: only for use by objc runtime
// Register handlers to be called when objc images are mapped, unmapped, and initialized.
// Dyld will call back the "mapped" function with an array of images that contain an objc-image-info section.
// Those images that are dylibs will have the ref-counts automatically bumped, so objc will no longer need to
// call dlopen() on them to keep them from being unloaded. During the call to _dyld_objc_notify_register(),
// dyld will call the "mapped" function with already loaded objc images. During any later dlopen() call,
// dyld will also call the "mapped" function. Dyld will call the "init" function when dyld would be called
// initializers in that image. This is when objc calls any +load methods in that image.
//
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped);
複製代碼
從_dyld_objc_notify_register
方法的註釋中能夠得出:
mapped
函數_dyld_objc_notify_register
中的三個參數含義以下:
map_images
:dyld將image加載進內存時,會觸發該函數load_image
:dyld初始化image會觸發該函數unmap_image
:dyld將image移除時,會觸發該函數當鏡像加載到內存時map_image
會觸發
/*********************************************************************** * map_images * Process the given images which are being mapped in by dyld. * Calls ABI-agnostic code after taking ABI-specific locks. * * Locking: write-locks runtimeLock **********************************************************************/
void map_images(unsigned count, const char * const paths[], const struct mach_header * const mhdrs[]) {
mutex_locker_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
複製代碼
map_image
調用map_images_nolock
,其中hCount
表示鏡像文件的個數,調用_read_images
來加載鏡像文件
void map_images_nolock(unsigned mhCount, const char * const mhPaths[], const struct mach_header * const mhdrs[]) {
...
if (hCount > 0) {
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
firstTime = NO;
}
複製代碼
經過以上這些能夠得出最核心的邏輯都在
_read_images
函數
經過doneOnce
一次建立兩張表gdb_objc_realized_classes
、allocatedClasses
if (!doneOnce) {
doneOnce = YES;
...
// namedClasses
// Preoptimized classes don't go in this table.
// 4/3 is NXMapTable's load factor
int namedClassesSize =
(isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
gdb_objc_realized_classes =
NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
allocatedClasses = NXCreateHashTable(NXPtrPrototype, 0, nil);
ts.log("IMAGE TIMES: first time tasks");
}
複製代碼
gdb_objc_realized_classes
存儲不在共享緩存且已命名的全部類,其容量是類數量的4/3allocatedClasses
存儲已經初始化的類// This is a misnomer: gdb_objc_realized_classes is actually a list of
// named classes not in the dyld shared cache, whether realized or not.
NXMapTable *gdb_objc_realized_classes; // exported for debuggers in objc-gdb.h
/*********************************************************************** * allocatedClasses * A table of all classes (and metaclasses) which have been allocated * with objc_allocateClassPair. **********************************************************************/
static NXHashTable *allocatedClasses = nil;
複製代碼
從列表中取出全部類,遍歷進行處理
for (EACH_HEADER) {
// 從編譯後的類列表中取出全部類,獲取到的是一個classref_t類型的指針
classref_t *classlist = _getObjc2ClassList(hi, &count);
if (! mustReadClasses(hi)) {
// Image is sufficiently optimized that we need not call readClass()
continue;
}
bool headerIsBundle = hi->isBundle();
bool headerIsPreoptimized = hi->isPreoptimized();
for (i = 0; i < count; i++) {
// 數組中會取出OS_dispatch_queue_concurrent、OS_xpc_object、NSRunloop等系統類,例如CF、Fundation、libdispatch中的類。以及本身建立的類
Class cls = (Class)classlist[i];
// 經過readClass函數獲取處理後的新類,
Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
// 初始化全部懶加載的類須要的內存空間 - 如今數據沒有加載到的 - 連類都沒有初始化的
if (newCls != cls && newCls) {
// Class was moved but not deleted. Currently this occurs
// only when the new class resolved a future class.
// Non-lazily realize the class below.
// 將懶加載的類添加到數組中
resolvedFutureClasses = (Class *)
realloc(resolvedFutureClasses,
(resolvedFutureClassCount+1) * sizeof(Class));
resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
}
}
}
複製代碼
readClass
方法會返回Class
,跟進去看看具體實現(把目光放在全部返回值上)
nil
popFutureNamedClass
判斷,這是專門針對將來的待處理的類的特殊操做
,所以也不會對ro、rw進行操做(可打斷點調試,建立類和系統類都不會進入)addNamedClass
、addClassTableEntry
方法後返回cls
將當前類添加到已建立好的gdb_objc_realized_classes
哈希表(存放全部類)
static void addNamedClass(Class cls, const char *name, Class replacing = nil) {
runtimeLock.assertLocked();
Class old;
if ((old = getClassExceptSomeSwift(name)) && old != replacing) {
inform_duplicate(name, old, cls);
// getMaybeUnrealizedNonMetaClass uses name lookups.
// Classes not found by name lookup must be in the
// secondary meta->nonmeta table.
addNonMetaClass(cls);
} else {
NXMapInsert(gdb_objc_realized_classes, name, cls);
}
assert(!(cls->data()->flags & RO_META));
// wrong: constructed classes are already realized when they get here
// assert(!cls->isRealized());
}
複製代碼
當前類已經初始化,因此要添加到allocatedClasses
哈希表
static void addClassTableEntry(Class cls, bool addMeta = true) {
runtimeLock.assertLocked();
// This class is allowed to be a known class via the shared cache or via
// data segments, but it is not allowed to be in the dynamic table already.
assert(!NXHashMember(allocatedClasses, cls));
if (!isKnownClass(cls))
NXHashInsert(allocatedClasses, cls);
if (addMeta)
addClassTableEntry(cls->ISA(), false);
}
複製代碼
將未映射Class和Super Class重映射,調用_getObjc2ClassRefs
獲取類的引用,調用_getObjc2SuperRefs
獲取父類的引用,經過remapClassRef
進行重映射
// 將未映射Class和Super Class重映射,被remap的類都是非懶加載的類
if (!noClassesRemapped()) {
for (EACH_HEADER) {
// 重映射Class,注意是從_getObjc2ClassRefs函數中取出類的引用
Class *classrefs = _getObjc2ClassRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
// fixme why doesn't test future1 catch the absence of this?
classrefs = _getObjc2SuperRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
}
}
複製代碼
經過_getObjc2SelectorRefs
拿到MachO中的靜態段__objc_selrefs
,遍歷列表調用sel_registerNameNoLock
將SEL添加到namedSelectors
哈希表
// 將全部SEL都註冊到哈希表中,是另一張哈希表
// Fix up @selector references
static size_t UnfixedSelectors;
{
mutex_locker_t lock(selLock);
for (EACH_HEADER) {
if (hi->isPreoptimized()) continue;
bool isBundle = hi->isBundle();
SEL *sels = _getObjc2SelectorRefs(hi, &count);
UnfixedSelectors += count;
for (i = 0; i < count; i++) {
const char *name = sel_cname(sels[i]);
// 註冊SEL的操做
sels[i] = sel_registerNameNoLock(name, isBundle);
}
}
}
複製代碼
經過_getObjc2MessageRefs
獲取到靜態段__objc_selrefs
,fixupMessageRef
遍歷將函數指針進行註冊,並fix爲新的函數指針
// Fix up old objc_msgSend_fixup call sites
// 修復舊的函數指針調用遺留
for (EACH_HEADER) {
message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
if (count == 0) continue;
if (PrintVtables) {
_objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
"call sites in %s", count, hi->fname());
}
for (i = 0; i < count; i++) {
// 內部將經常使用的alloc、objc_msgSend等函數指針進行註冊,並fix爲新的函數指針
fixupMessageRef(refs+i);
}
}
複製代碼
調用_getObjc2ProtocolList
獲取到__objc_protolist
協議列表,readProtocol
遍歷添加Protocol到protocol_map
哈希表
// Discover protocols. Fix up protocol refs.
// 遍歷全部協議列表,而且將協議列表加載到Protocol的哈希表中
for (EACH_HEADER) {
extern objc_class OBJC_CLASS_$_Protocol;
// cls = Protocol類,全部協議和對象的結構體都相似,isa都對應Protocol類
Class cls = (Class)&OBJC_CLASS_$_Protocol;
assert(cls);
// 獲取protocol哈希表
NXMapTable *protocol_map = protocols();
bool isPreoptimized = hi->isPreoptimized();
bool isBundle = hi->isBundle();
// 從編譯器中讀取並初始化Protocol
protocol_t **protolist = _getObjc2ProtocolList(hi, &count);
for (i = 0; i < count; i++) {
readProtocol(protolist[i], cls, protocol_map,
isPreoptimized, isBundle);
}
}
複製代碼
經過_getObjc2ProtocolRefs
獲取到__objc_protorefs
**(與__objc_protolist不是同一個東西)**遍歷remapProtocolRef
修復協議,remapProtocolRef
比較當前協議和協議列表中同一內存地址的協議是否相同,若是不一樣則替換
// Fix up @protocol references
// Preoptimized images may have the right
// answer already but we don't know for sure.
// 修復協議列表引用,優化後的images多是正確的,可是並不肯定
for (EACH_HEADER) {
// 須要注意到是,下面的函數是_getObjc2ProtocolRefs,和上面的_getObjc2ProtocolList不同
protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
for (i = 0; i < count; i++) {
remapProtocolRef(&protolist[i]);
}
}
複製代碼
蘋果官方對於非懶加載類的定義是:
NonlazyClass is all about a class implementing or not a +load method.
因此實現了+load
方法的類是非懶加載類,不然就是懶加載類
下面是非懶加載類
的加載流程:
_getObjc2NonlazyClassList
獲取到__objc_nlclslist
,取出非懶加載類
addClassTableEntry
再加載一遍——若是已添加就不會添加進去,確保整個結構都被添加realizeClassWithoutSwift
是接下來要關注的地方// Realize non-lazy classes (for +load methods and static instances)
// 實現非懶加載的類,對於load方法和靜態實例變量
for (EACH_HEADER) {
classref_t *classlist =
_getObjc2NonlazyClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
// printf("non-lazy Class:%s\n",cls->mangledName());
if (!cls) continue;
// hack for class __ARCLite__, which didn't get this above
#if TARGET_OS_SIMULATOR
if (cls->cache._buckets == (void*)&_objc_empty_cache &&
(cls->cache._mask || cls->cache._occupied))
{
cls->cache._mask = 0;
cls->cache._occupied = 0;
}
if (cls->ISA()->cache._buckets == (void*)&_objc_empty_cache &&
(cls->ISA()->cache._mask || cls->ISA()->cache._occupied))
{
cls->ISA()->cache._mask = 0;
cls->ISA()->cache._occupied = 0;
}
#endif
addClassTableEntry(cls);
if (cls->isSwiftStable()) {
if (cls->swiftMetadataInitializer()) {
_objc_fatal("Swift class %s with a metadata initializer "
"is not allowed to be non-lazy",
cls->nameForLogging());
}
// fixme also disallow relocatable classes
// We can't disallow all Swift classes because of
// classes like Swift.__EmptyArrayStorage
}
// 實現全部非懶加載的類(實例化類對象的一些信息,例如rw)
realizeClassWithoutSwift(cls);
}
}
複製代碼
realizeClassWithoutSwift
分析:
①rw
初始化並將ro
拷貝一份到rw
中的ro
rw
表示readWrite
,因爲動態性,可能會往類中添加屬性、方法、添加協議ro
表示readOnly
,在編譯時已經肯定了內存ro = (const class_ro_t *)cls->data();
if (ro->flags & RO_FUTURE) {
// This was a future class. rw data is already allocated.
rw = cls->data();
ro = cls->data()->ro;
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else {
// Normal class. Allocate writeable class data.
rw = (class_rw_t *)calloc(sizeof(class_rw_t), 1);
rw->ro = ro;
rw->flags = RW_REALIZED|RW_REALIZING;
cls->setData(rw);
}
複製代碼
②遞歸調用realizeClassWithoutSwift
完善繼承鏈並處理當前類的父類
、元類
;若是有父類
,就經過addSubclass
把當前類
放到父類
的子類列表
中去
if (!cls) return nil;
...
supercls = realizeClassWithoutSwift(remapClass(cls->superclass));
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()));
...
// Update superclass and metaclass in case of remapping
cls->superclass = supercls;
cls->initClassIsa(metacls);
...
// Connect this class to its superclass's subclass lists
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
複製代碼
③當isa
找到根元類以後,根元類的isa是指向本身的,不會返回nil從而致使死循環——remapClass
中對類在表中進行查找的操做,若是表中已有該類,則返回一個空值;若是沒有則返回當前類,這樣保證了類只加載一次並結束遞歸
static Class remapClass(Class cls) {
runtimeLock.assertLocked();
Class c2;
if (!cls) return nil;
NXMapTable *map = remappedClasses(NO);
if (!map || NXMapMember(map, cls, (void**)&c2) == NX_MAPNOTAKEY) {
return cls;
} else {
return c2;
}
}
複製代碼
④最後調用了methodizeClass
// Attach categories
methodizeClass(cls);
return cls;
複製代碼
⑤在methodizeClass
中,從ro
中讀取方法列表(包括分類中的方法)、屬性列表、協議列表
賦值給rw
// Install methods and properties that the class implements itself.
method_list_t *list = ro->baseMethods();
if (list) {
prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));
rw->methods.attachLists(&list, 1);
}
property_list_t *proplist = ro->baseProperties;
if (proplist) {
rw->properties.attachLists(&proplist, 1);
}
protocol_list_t *protolist = ro->baseProtocols;
if (protolist) {
rw->protocols.attachLists(&protolist, 1);
}
// Root classes get bonus method implementations if they don't have
// them already. These apply before category replacements.
if (cls->isRootMetaclass()) {
// root metaclass
addMethod(cls, SEL_initialize, (IMP)&objc_noop_imp, "", NO);
}
// Attach categories.
category_list *cats = unattachedCategoriesForClass(cls, true /*realizing*/);
attachCategories(cls, cats, false /*don't flush caches*/);
複製代碼
⑥attachLists
是如何插入數據的呢?方法屬性協議均可以直接經過attachLists
插入嗎?
方法、屬性
繼承於entsize_list_tt
,協議
則是相似entsize_list_tt
實現,都是二維數組
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;//10
uint32_t newCount = oldCount + addedCount;//4
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
array()->count = newCount;// 10+4
memmove(array()->lists + addedCount, array()->lists,
oldCount * sizeof(array()->lists[0]));
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
}
else {
// 1 list -> many lists
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
}
複製代碼
從attachLists
的源碼實現中能夠得出:
(多對多)若是當前調用attachLists
的list_array_tt
二維數組中有多個一維數組
realloc
對容器進行從新分配大小爲原來的大小加上新增的大小memmove
把原來的數據移動到容器的末尾memcpy
拷貝到容器的起始位置(0對一)若是調用attachLists
的list_array_tt
二維數組爲空且新增大小數目爲 1
addedList
的第一個list
(一對多)若是當前調用attachLists
的list_array_tt
二維數組只有一個一維數組
realloc
對容器進行從新分配大小爲原來的大小加上新增的大小Array
的最後一個位置memcpy
拷貝到容器的起始位置而memmove
和memcpy
的區別在於:
memmove
進行內存平移,保證安全memcpy
從原內存地址的起始位置開始拷貝若干個字節到目標內存地址中,速度快前面已經提到了實現+load
方法的類就是非懶加載類
,那麼沒有實現的類就是懶加載類
也能夠經過printf("non-lazy Class:%s\n",cls->mangledName())
去打印獲取到全部非懶加載類
,發現只有實現了+load
的類纔會被打印(FXPerson
內部實現了+load,其餘都是系統內置的類)
那麼懶加載類
是什麼時候加到內存中的呢?
之因此叫懶加載類
還不是由於它懶嘛😆,用到的時候纔會加到內存中
調用懶加載類
讓他幹活就是發送消息,仔細閱讀lookUpImpOrForward
實現發現會有這麼一頓操做
realizeClassMaybeSwiftAndLeaveLocked
realizeClassMaybeSwiftAndLeaveLocked
調用realizeClassMaybeSwiftMaybeRelock
realizeClassMaybeSwiftMaybeRelock
調用realizeClassWithoutSwift
IMP lookUpImpOrForward(Class cls, SEL sel, id inst, bool initialize, bool cache, bool resolver) {
...
if (!cls->isRealized()) {
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
// runtimeLock may have been dropped but is now locked again
}
...
}
static Class realizeClassMaybeSwiftAndLeaveLocked(Class cls, mutex_t& lock) {
return realizeClassMaybeSwiftMaybeRelock(cls, lock, true);
}
static Class realizeClassMaybeSwiftMaybeRelock(Class cls, mutex_t& lock, bool leaveLocked) {
lock.assertLocked();
if (!cls->isSwiftStable_ButAllowLegacyForNow()) {
// Non-Swift class. Realize it now with the lock still held.
// fixme wrong in the future for objc subclasses of swift classes
realizeClassWithoutSwift(cls);
if (!leaveLocked) lock.unlock();
} else {
// Swift class. We need to drop locks and call the Swift
// runtime to initialize it.
lock.unlock();
cls = realizeSwiftClass(cls);
assert(cls->isRealized()); // callback must have provoked realization
if (leaveLocked) lock.lock();
}
return cls;
}
複製代碼
Q1:實現了+load
的子類ClassA
繼承於沒有+load
的父類ClassB
,ClassA
屬於非懶加載類,在_read_images
時加載。那麼ClassB
是什麼呢?什麼時候加載?
A1:ClassB
屬於懶加載類
,在子類realizeClassWithoutSwift
遞歸時加載到內存(前文有提到realizeClassWithoutSwift會完善繼承鏈並處理當前類的父類、元類)
Q2:父類A實現了+load
方法,子類B沒有實現,那麼子類B是懶加載類?什麼時候加載?
A2:子類B
屬於懶加載類
,父類A
幹活跟子類B
不要緊,用到時再加載
因爲篇幅有限,將在下一篇文章中介紹
// Discover categories.
// 發現和處理全部Category
for (EACH_HEADER) {
// 外部循環遍歷找到當前類,查找類對應的Category數組
category_t **catlist =
_getObjc2CategoryList(hi, &count);
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
for (i = 0; i < count; i++) {
// 內部循環遍歷當前類的全部Category
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls);
// 首先,經過其所屬的類註冊Category。若是這個類已經被實現,則從新構造類的方法列表。
bool classExists = NO;
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
// 將Category添加到對應Class的value中,value是Class對應的全部category數組
addUnattachedCategoryForClass(cat, cls, hi);
// 將Category的method、protocol、property添加到Class
if (cls->isRealized()) {
remethodizeClass(cls);
classExists = YES;
}
if (PrintConnecting) {
_objc_inform("CLASS: found category -%s(%s) %s",
cls->nameForLogging(), cat->name,
classExists ? "on existing class" : "");
}
}
// 這塊和上面邏輯同樣,區別在於這塊是對Meta Class作操做,而上面則是對Class作操做
// 根據下面的邏輯,從代碼的角度來講,是能夠對原類添加Category的
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
addUnattachedCategoryForClass(cat, cls->ISA(), hi);
if (cls->ISA()->isRealized()) {
remethodizeClass(cls->ISA());
}
if (PrintConnecting) {
_objc_inform("CLASS: found category +%s(%s)",
cls->nameForLogging(), cat->name);
}
}
}
}
複製代碼
本文主要講了MachO中的數據是如何加載到內存的,有些細節點須要本身LLVM調試纔會有所體會
下一篇文章會梳理分類的加載
和load_image
流程