YOLO模型詳解

YOLO將物體檢測作爲一個迴歸問題進行求解,輸入圖像經過一次inference,便能得到圖像中所有物體的位置和其所屬類別及相應的置信概率。而rcnn/fast rcnn/faster rcnn將檢測結果分爲兩部分求解:物體類別(分類問題),物體位置即bounding box(迴歸問題)。 YOLO檢測網絡包括24個卷積層和2個全連接層,如下圖所示。(YOLO網絡借鑑了GoogLeNet分類網絡結構
相關文章
相關標籤/搜索