\[此篇文章介紹關於SVM中的一些不懂的地方的公式推導,以及代碼實現和一些SVM問題,經過作題檢驗掌握的效果。\]python
\[調用sklearn包,進行SVM分類\]算法
#!/usr/bin/python # -*- coding utf-8 -*- import numpy as np import matplotlib.pyplot as plt import pandas as pd import matplotlib as mpl from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def load_data(): path = 'E:\數據挖掘\Machine learning\[小象學院]機器學習課件\8.Regression代碼\8.Regression\iris.data' # 讀取文件路徑 data = pd.read_csv(path, header = None) # 從data 讀取數據, x爲前4列的全部數據, y爲第5列數據 x, y = data[range(4)], data[4] # 返回字符類別的位置索引, 因y數組包含三類, 對應返回下標值 y = pd.Categorical(y).codes # 取x的前兩列數據, 通常SVM只作二特徵分類, 多特徵的轉化爲多個二特徵分類再bagging? x = x[[0, 1]] # x = x[[0 ,2]] return x, y def classifier(x,y): # 鳶尾花包含四個特徵屬性, 包含三類標籤, 山鳶尾(0), 變色鳶尾(1), 維吉尼亞鳶尾(2) iris_feature = u'花萼長度', u'花萼寬度', u'花瓣長度', u'花瓣寬度' # 按 0.6 的比例,test_data 佔40%, train_data 佔60%, random_state隨機數的種子, 1爲產生相同隨機數, 產生不一樣隨機數 x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 使用SVM進行分類訓練, 包含關鍵字, C, gamma, kernel # kernel='linear'時,爲線性核,C越大分類效果越好, kernel= 'rbf' 時(default), 爲高斯核 # gamma值越小,分類界面越連續;gamma值越大,分類界面越「散」,分類效果越好 # decision_function_shape = 'ovr' 時,爲one vs rest, 即一個類別與其餘類別進行劃分,decision_function_shape = 'ovo' # 爲one vs one,即將類別兩兩之間進行劃分,用二分類的方法模擬多分類的結果 clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # score函數返回返回該次預測的係數R2, 在(0, 1)之間、accuracy_score指的是分類準確率,即分類正確佔全部分類的百分比 # recall_score 召回率 = 提取出的正確信息條數 / 樣本中的信息條數 print(clf.score(x_train, y_train)) print('訓練集準確率:', accuracy_score(y_train, clf.predict(x_train))) print(clf.score(x_test, y_test)) print('測試集準確率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function()的功能: 計算樣本點到分割超平面的函數距離, 每一列的值表明距離各種別的距離 print('decision_function:\n', clf.decision_function(x_train)) print('\npredict:\n', clf.predict(x_train)) # 畫圖 x1_min, x2_min = x.min() # 第0列的範圍 x1_max, x2_max = x.max() # 第1列的範圍 x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成網格採樣點 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 測試點 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 樣本到決策面的距離 # print Z grid_hat = clf.predict(grid_test) # 預測分類值 grid_hat = grid_hat.reshape(x1.shape) # 使之與輸入的形狀相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 樣本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中測試集樣本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鳶尾花SVM二特徵分類', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show() if __name__ == "__main__": x, y = load_data() classifier(x, y)
\[SMO算法\]數組
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def loadDataSet(fileName): # 數據矩陣 dataMat = [] # 標籤向量 labelMat = [] # 打開文件 fr = open(fileName) # 逐行讀取 for line in fr.readlines(): # 去掉每一行首尾的空白符,例如'\n','\r','\t',' ' # 將每一行內容根據'\t'符進行切片 lineArr = line.strip().split('\t') # 添加數據(100個元素排成一行) dataMat.append([float(lineArr[0]), float(lineArr[1])]) # 添加標籤(100個元素排成一行) labelMat.append(float(lineArr[2])) return dataMat, labelMat def selectJrand(i, m): # i爲第一個alpha的下標,m是全部alpha的數目 j = i while (j == i): # uniform()方法將隨機生成一個實數,它在[x, y)範圍內 j = int(np.random.uniform(0, m)) return j def clipAlpha(aj, H, L): if aj > H: aj = H if L > aj: aj = L return aj def smoSimple(dataMatIn, classLabels, C, toler, maxIter): # 轉換爲numpy的mat矩陣存儲(100,2) dataMatrix = np.mat(dataMatIn) # 轉換爲numpy的mat矩陣存儲並轉置(100,1) labelMat = np.mat(classLabels).transpose() # 初始化b參數,統計dataMatrix的維度,m:行;n:列 b = 0 # 統計dataMatrix的維度,m:100行;n:2列 m, n = np.shape(dataMatrix) # 初始化alpha參數,設爲0 alphas = np.mat(np.zeros((m, 1))) # 初始化迭代次數 iter_num = 0 # 最多迭代maxIter次 while (iter_num < maxIter): alphaPairsChanged = 0 for i in range(m): # 步驟1:計算偏差Ei # multiply(a,b)就是個乘法,若是a,b是兩個數組,那麼對應元素相乘 # .T爲轉置 fxi = float(np.multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[i, :].T)) + b # 偏差項計算公式 Ei = fxi - float(labelMat[i]) # 優化alpha,設定必定的容錯率 if ((labelMat[i] * Ei < -toler) and (alphas[i] < C)) or ((labelMat[i] * Ei > toler) and (alphas[i] > 0)): # 隨機選擇另外一個alpha_i成對比優化的alpha_j j = selectJrand(i, m) # 步驟1,計算偏差Ej fxj = float(np.multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[j, :].T)) + b # 偏差項計算公式 Ej = fxj - float(labelMat[j]) # 保存更新前的alpha值,使用深拷貝(徹底拷貝)A深層拷貝爲B,A和B是兩個獨立的個體 alphaIold = alphas[i].copy() alphaJold = alphas[j].copy() # 步驟2:計算上下界H和L if (labelMat[i] != labelMat[j]): L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if (L == H): print("L == H") continue # 步驟3:計算eta eta = 2.0 * dataMatrix[i, :] * dataMatrix[j, :].T - dataMatrix[i, :] * dataMatrix[i, :].T - dataMatrix[ j, :] * dataMatrix[ j, :].T if eta >= 0: print("eta>=0") continue # 步驟4:更新alpha_j alphas[j] -= labelMat[j] * (Ei - Ej) / eta # 步驟5:修剪alpha_j alphas[j] = clipAlpha(alphas[j], H, L) if (abs(alphas[j] - alphaJold) < 0.00001): print("alpha_j變化過小") continue # 步驟6:更新alpha_i alphas[i] += labelMat[j] * labelMat[i] * (alphaJold - alphas[j]) # 步驟7:更新b_1和b_2 b1 = b - Ei - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[i, :].T - labelMat[ j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[i, :].T b2 = b - Ej - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[j, :].T - labelMat[ j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[j, :].T # 步驟8:根據b_1和b_2更新b if (0 < alphas[i] < C): b = b1 elif (0 < alphas[j] < C): b = b2 else: b = (b1 + b2) / 2.0 # 統計優化次數 alphaPairsChanged += 1 # 打印統計信息 print("第%d次迭代 樣本:%d, alpha優化次數:%d" % (iter_num, i, alphaPairsChanged)) # 更新迭代次數 if (alphaPairsChanged == 0): iter_num += 1 else: iter_num = 0 print("迭代次數:%d" % iter_num) return b, alphas def get_w(dataMat, labelMat, alphas): alphas, dataMat, labelMat = np.array(alphas), np.array(dataMat), np.array(labelMat) # 咱們不知道labelMat的shape屬性是多少, # 可是想讓labelMat變成只有一列,行數不知道多少, # 經過labelMat.reshape(1, -1),Numpy自動計算出有100行, # 新的數組shape屬性爲(100, 1) # np.tile(labelMat.reshape(1, -1).T, (1, 2))將labelMat擴展爲兩列(將第1列複製獲得第2列) # dot()函數是矩陣乘,而*則表示逐個元素相乘 # w = sum(alpha_i * yi * xi) w = np.dot((np.tile(labelMat.reshape(1, -1).T, (1, 2)) * dataMat).T, alphas) return w.tolist() def showClassifer(dataMat, w, b): # 正樣本 data_plus = [] # 負樣本 data_minus = [] for i in range(len(dataMat)): if labelMat[i] > 0: data_plus.append(dataMat[i]) else: data_minus.append(dataMat[i]) # 轉換爲numpy矩陣 data_plus_np = np.array(data_plus) # 轉換爲numpy矩陣 data_minus_np = np.array(data_minus) # 正樣本散點圖(scatter) # transpose轉置 plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7) # 負樣本散點圖(scatter) plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7) # 繪製直線 x1 = max(dataMat)[0] x2 = min(dataMat)[0] a1, a2 = w b = float(b) a1 = float(a1[0]) a2 = float(a2[0]) y1, y2 = (-b - a1 * x1) / a2, (-b - a1 * x2) / a2 plt.plot([x1, x2], [y1, y2]) # 找出支持向量點 # enumerate在字典上是枚舉、列舉的意思 for i, alpha in enumerate(alphas): # 支持向量機的點 if (abs(alpha) > 0): x, y = dataMat[i] plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolors='red') plt.show() if __name__ == '__main__': dataMat, labelMat = loadDataSet('E:\\數據挖掘\\Machine learning\\代碼\\SVM_Project1\\testSet.txt') b, alphas = smoSimple(dataMat, labelMat, 0.6, 0.001, 40) w = get_w(dataMat, labelMat, alphas) showClassifer(dataMat, w, b)
\[核函數測試\]緩存
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import random class optStruct: def __init__(self, dataMatIn, classLabels, C, toler, kTup): # 數據矩陣 self.X = dataMatIn # 數據標籤 self.labelMat = classLabels # 鬆弛變量 self.C = C # 容錯率 self.tol = toler # 矩陣的行數 self.m = np.shape(dataMatIn)[0] # 根據矩陣行數初始化alphas矩陣,一個m行1列的全零列向量 self.alphas = np.mat(np.zeros((self.m, 1))) # 初始化b參數爲0 self.b = 0 # 根據矩陣行數初始化偏差緩存矩陣,第一列爲是否有效標誌位,第二列爲實際的偏差E的值 self.eCache = np.mat(np.zeros((self.m, 2))) # 初始化核K self.K = np.mat(np.zeros((self.m, self.m))) # 計算全部數據的核K for i in range(self.m): self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup) def kernelTrans(X, A, kTup): # 讀取X的行列數 m, n = np.shape(X) # K初始化爲m行1列的零向量 K = np.mat(np.zeros((m, 1))) # 線性核函數只進行內積 if kTup[0] == 'lin': K = X * A.T # 高斯核函數,根據高斯核函數公式計算 elif kTup[0] == 'rbf': for j in range(m): deltaRow = X[j, :] - A K[j] = deltaRow * deltaRow.T K = np.exp(K / (-1 * kTup[1] ** 2)) else: raise NameError('核函數沒法識別') return K def loadDataSet(fileName): # 數據矩陣 dataMat = [] # 標籤向量 labelMat = [] # 打開文件 fr = open(fileName) # 逐行讀取 for line in fr.readlines(): # 去掉每一行首尾的空白符,例如'\n','\r','\t',' ' # 將每一行內容根據'\t'符進行切片 lineArr = line.strip().split('\t') # 添加數據(100個元素排成一行) dataMat.append([float(lineArr[0]), float(lineArr[1])]) # 添加標籤(100個元素排成一行) labelMat.append(float(lineArr[2])) return dataMat, labelMat def calcEk(oS, k): # multiply(a,b)就是個乘法,若是a,b是兩個數組,那麼對應元素相乘 # .T爲轉置 fXk = float(np.multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b) # 計算偏差項 Ek = fXk - float(oS.labelMat[k]) # 返回偏差項 return Ek def selectJrand(i, m): j = i while (j == i): # uniform()方法將隨機生成一個實數,它在[x, y)範圍內 j = int(random.uniform(0, m)) return j def selectJ(i, oS, Ei): # 初始化 maxK = -1 maxDeltaE = 0 Ej = 0 # 根據Ei更新偏差緩存 oS.eCache[i] = [1, Ei] # 對一個矩陣.A轉換爲Array類型 # 返回偏差不爲0的數據的索引值 validEcacheList = np.nonzero(oS.eCache[:, 0].A)[0] # 有不爲0的偏差 if (len(validEcacheList) > 1): # 遍歷,找到最大的Ek for k in validEcacheList: # 不計算k==i節省時間 if k == i: continue # 計算Ek Ek = calcEk(oS, k) # 計算|Ei - Ek| deltaE = abs(Ei - Ek) # 找到maxDeltaE if (deltaE > maxDeltaE): maxK = k maxDeltaE = deltaE Ej = Ek # 返回maxK,Ej return maxK, Ej # 沒有不爲0的偏差 else: # 隨機選擇alpha_j的索引值 j = selectJrand(i, oS.m) # 計算Ej Ej = calcEk(oS, j) # 返回j,Ej return j, Ej def updateEk(oS, k): # 計算Ek Ek = calcEk(oS, k) # 更新偏差緩存 oS.eCache[k] = [1, Ek] def clipAlpha(aj, H, L): if aj > H: aj = H if L > aj: aj = L return aj def innerL(i, oS): # 步驟1:計算偏差Ei Ei = calcEk(oS, i) # 優化alpha,設定必定的容錯率 if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ( (oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)): # 使用內循環啓發方式2選擇alpha_j,並計算Ej j, Ej = selectJ(i, oS, Ei) # 保存更新前的alpha值,使用深層拷貝 alphaIold = oS.alphas[i].copy() alphaJold = oS.alphas[j].copy() # 步驟2:計算上界H和下界L if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L == H: print("L == H") return 0 # 步驟3:計算eta eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j] if eta >= 0: print("eta >= 0") return 0 # 步驟4:更新alpha_j oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta # 步驟5:修剪alpha_j oS.alphas[j] = clipAlpha(oS.alphas[j], H, L) # 更新Ej至偏差緩存 updateEk(oS, j) if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("alpha_j變化過小") return 0 # 步驟6:更新alpha_i oS.alphas[i] += oS.labelMat[i] * oS.labelMat[j] * (alphaJold - oS.alphas[j]) # 更新Ei至偏差緩存 updateEk(oS, i) # 步驟7:更新b_1和b_2: b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * ( oS.alphas[j] - alphaJold) * oS.K[j, i] b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * ( oS.alphas[j] - alphaJold) * oS.K[j, j] # 步驟8:根據b_1和b_2更新b if (0 < oS.alphas[i] < oS.C): oS.b = b1 elif (0 < oS.alphas[j] < oS.C): oS.b = b2 else: oS.b = (b1 + b2) / 2.0 return 1 else: return 0 def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)): # 初始化數據結構 oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup) # 初始化當前迭代次數 iter = 0 entrieSet = True alphaPairsChanged = 0 # 遍歷整個數據集alpha都沒有更新或者超過最大迭代次數,則退出循環 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entrieSet)): alphaPairsChanged = 0 # 遍歷整個數據集 if entrieSet: for i in range(oS.m): # 使用優化的SMO算法 alphaPairsChanged += innerL(i, oS) print("全樣本遍歷:第%d次迭代 樣本:%d, alpha優化次數:%d" % (iter, i, alphaPairsChanged)) iter += 1 # 遍歷非邊界值 else: # 遍歷不在邊界0和C的alpha nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i, oS) print("非邊界遍歷:第%d次迭代 樣本:%d, alpha優化次數:%d" % (iter, i, alphaPairsChanged)) iter += 1 # 遍歷一次後改成非邊界遍歷 if entrieSet: entrieSet = False # 若是alpha沒有更新,計算全樣本遍歷 elif (alphaPairsChanged == 0): entrieSet = True print("迭代次數:%d" % iter) # 返回SMO算法計算的b和alphas return oS.b, oS.alphas def testRbf(k1=1.3): # 加載訓練集 dataArr, labelArr = loadDataSet('E:\\數據挖掘\\Machine learning\\代碼\\SVM_Project3\\testSetRBF.txt') # 根據訓練集計算b, alphas b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 100, ('rbf', k1)) datMat = np.mat(dataArr) labelMat = np.mat(labelArr).transpose() # 得到支持向量 svInd = np.nonzero(alphas.A > 0)[0] sVs = datMat[svInd] labelSV = labelMat[svInd] print("支持向量個數:%d" % np.shape(sVs)[0]) m, n = np.shape(datMat) errorCount = 0 for i in range(m): # 計算各個點的核 kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1)) # 根據支持向量的點計算超平面,返回預測結果 predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b # 返回數組中各元素的正負號,用1和-1表示,並統計錯誤個數 if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 # 打印錯誤率 print('訓練集錯誤率:%.2f%%' % ((float(errorCount) / m) * 100)) # 加載測試集 dataArr, labelArr = loadDataSet('E:\\數據挖掘\\Machine learning\\代碼\\SVM_Project3\\testSetRBF2.txt') errorCount = 0 datMat = np.mat(dataArr) labelMat = np.mat(labelArr).transpose() m, n = np.shape(datMat) for i in range(m): # 計算各個點的核 kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1)) # 根據支持向量的點計算超平面,返回預測結果 predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b # 返回數組中各元素的正負號,用1和-1表示,並統計錯誤個數 if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 # 打印錯誤率 print('訓練集錯誤率:%.2f%%' % ((float(errorCount) / m) * 100)) def showDataSet(dataMat, labelMat): # 正樣本 data_plus = [] # 負樣本 data_minus = [] for i in range(len(dataMat)): if labelMat[i] > 0: data_plus.append(dataMat[i]) else: data_minus.append(dataMat[i]) # 轉換爲numpy矩陣 data_plus_np = np.array(data_plus) # 轉換爲numpy矩陣 data_minus_np = np.array(data_minus) # 正樣本散點圖(scatter) # transpose轉置 plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1]) # 負樣本散點圖(scatter) plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1]) # 顯示 plt.show() if __name__ == '__main__': testRbf()
\(在樣本空間中任意點x到超平面(w,b)的距離可寫爲:\)數據結構
\[ r = \frac{|w^Tx + b|}{||w||} \]app
\[推導以下:\\ 取x_0爲任意點x在超平面y= w^Tx + b的投影\\ wx_0 +b = 0 \Longrightarrow |w\vec {xx_0}| = |w\vec r|= ||w||r \\ 另外一方面:|w\vec{xx_0}| = |w(x_0 -x)|=|-b-wx|=|b+wx|\\ \therefore r = \frac{|w^Tx + b|}{||w||}\]
\[ \hat r=yf(x)=y(w^Tx + b)\\ \tilde r = ry = y\frac{|w^Tx + b|}{||w||}=\frac {\hat r}{||w||}\\ \\定義\hat r爲函數間隔,\tilde r爲幾何間隔 \]dom
\[ L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right) \]機器學習
\[原問題爲極小極大問題\min_{\boldsymbol{w,b}}\quad \max_{\boldsymbol{\alpha}}\quad L(w,b,\alpha)\\ 轉化爲極大極小問題\max_{\boldsymbol{\alpha}}\quad \min_{\boldsymbol{w,b}}\quad L(w,b,\alpha)\]函數
\[推導以下:\\ 目標函數:min\frac{1}{2}||w||^2\\ 約束條件:y_i(w^Tx_i + b) \geq 1\\ \therefore 對每一個在y_i(w^Tx_i+b)-1的i乘以\alpha_i\\ \therefore L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)\]學習
\[在其餘的機器學習上述公式是L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)-1\right),二者等價\]
\[ \begin{aligned} w &= \sum_{i=1}^m\alpha_iy_i\boldsymbol{x}_i \\ 0 &=\sum_{i=1}^m\alpha_iy_i \end{aligned} \]
\[推導以下:\\ \begin{aligned} L(\boldsymbol{w},b,\boldsymbol{\alpha}) &= \frac{1}{2}||\boldsymbol{w}||^2+\sum_{i=1}^m\alpha_i(1-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b)) \\ & = \frac{1}{2}||\boldsymbol{w}||^2+\sum_{i=1}^m(\alpha_i-\alpha_iy_i \boldsymbol{w}^T\boldsymbol{x}_i-\alpha_iy_ib)\\ & =\frac{1}{2}\boldsymbol{w}^T\boldsymbol{w}+\sum_{i=1}^m\alpha_i -\sum_{i=1}^m\alpha_iy_i\boldsymbol{w}^T\boldsymbol{x}_i-\sum_{i=1}^m\alpha_iy_ib \end{aligned}\]
\[\frac {\partial L}{\partial \boldsymbol{w}}=\frac{1}{2}\times2\times\boldsymbol{w} + 0 - \sum_{i=1}^{m}\alpha_iy_i \boldsymbol{x}_i-0= 0 \Longrightarrow \boldsymbol{w}=\sum_{i=1}^{m}\alpha_iy_i \boldsymbol{x}_i\]
\[\frac {\partial L}{\partial b}=0+0-0-\sum_{i=1}^{m}\alpha_iy_i=0 \Longrightarrow \sum_{i=1}^{m}\alpha_iy_i=0\]
\[ \begin{aligned} \max_{\boldsymbol{\alpha}} & \sum_{i=1}^m\alpha_i - \frac{1}{2}\sum_{i = 1}^m\sum_{j=1}^m\alpha_i \alpha_j y_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j \\ s.t. & \sum_{i=1}^m \alpha_i y_i =0 \\ & \alpha_i \geq 0 \quad i=1,2,\dots ,m \end{aligned} \]
\(推導以下:\\計算拉格朗日函數,即將求得的兩個公式代入\)
\[\begin{aligned} \min_{\boldsymbol{w},b} L(\boldsymbol{w},b,\boldsymbol{\alpha}) &=\frac{1}{2}\boldsymbol{w}^T\boldsymbol{w}+\sum_{i=1}^m\alpha_i -\sum_{i=1}^m\alpha_iy_i\boldsymbol{w}^T\boldsymbol{x}_i-\sum_{i=1}^m\alpha_iy_ib \\ &=\frac {1}{2}\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i-\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_ i -b\sum _{i=1}^m\alpha_iy_i \\ & = -\frac {1}{2}\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i -b\sum _{i=1}^m\alpha_iy_i \end{aligned}\]
\[\begin{aligned} \min_{\boldsymbol{w},b} L(\boldsymbol{w},b,\boldsymbol{\alpha}) &= -\frac {1}{2}\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i \\ &=-\frac {1}{2}(\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i)^T(\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i)+\sum _{i=1}^m\alpha_i \\ &=-\frac {1}{2}\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i \\ &=\sum _{i=1}^m\alpha_i-\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j \end{aligned}\]
\[ \begin{aligned} & \min_{\boldsymbol{\alpha}}\frac{1}{2}\sum_{i = 1}^m\sum_{j=1}^m\alpha_i \alpha_j y_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j- \sum_{i=1}^m\alpha_i\\ & s.t. \sum_{i=1}^m \alpha_i y_i =0 \\ & \alpha_i \geq 0 \quad i=1,2,\dots ,m \end{aligned} \]
\[在原\max_{\boldsymbol{\alpha}}\quad \min_{\boldsymbol{w,b}}\quad L(w,b,\alpha)加負號,一樣轉化爲約束最優化問題,爲了求解最優解\alpha^*\]
\[ 計算獲得\\w^* = \sum_{i =1}^m{\alpha_i}^*y_ix_i\\ b^* = y_i -\sum_{i=1}^m{\alpha_i}^*y_i(x_ix_j)\\ 分離獲得超平面:\\ w^*x+ b^* =0\\ 分類決策函數:\\ f(x) =sign(w^*x+b^*) \]
\[引入鬆弛因子\xi_i的目標函數以下:\\\]
\[ \begin{aligned} & \min_{\boldsymbol{w,b,\xi}}\frac{1}{2}||w||^2 +C\sum_{i = 1}^m\xi_i\\ s.t. & y_i(w.x_i+b)\geq1-\xi_i, i=1,2,\dots ,m \\ & \xi_i \geq 0 \quad i=1,2,\dots ,m \end{aligned} \]
\[同理如上式,構造拉格朗日函數L,再對w,b,\xi分別求偏導,再代入L\]
\[ \begin{aligned} L(\boldsymbol{w},b,\boldsymbol{\alpha},\boldsymbol{\xi},\boldsymbol{\mu}) &= \frac{1}{2}||\boldsymbol{w}||^2+C\sum_{i=1}^m \xi_i+\sum_{i=1}^m \alpha_i(1-\xi_i-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b))-\sum_{i=1}^m\mu_i \xi_i \end{aligned} \]
\[對w,b,\xi求偏導\]
\[ \begin{aligned} w &= \sum_{i=1}^m\alpha_iy_i\boldsymbol{x}_i \\ 0 &=\sum_{i=1}^m\alpha_iy_i\\ C & = a_i+\mu_i \end{aligned} \]
\[代入L\]
\[ \begin{aligned} \min_{\boldsymbol{w},b,\boldsymbol{\xi}}L(\boldsymbol{w},b,\boldsymbol{\alpha},\boldsymbol{\xi},\boldsymbol{\mu}) &= \frac{1}{2}||\boldsymbol{w}||^2+C\sum_{i=1}^m \xi_i+\sum_{i=1}^m \alpha_i(1-\xi_i-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b))-\sum_{i=1}^m\mu_i \xi_i \\ &=\frac{1}{2}||\boldsymbol{w}||^2+\sum_{i=1}^m\alpha_i(1-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b))+C\sum_{i=1}^m \xi_i-\sum_{i=1}^m \alpha_i \xi_i-\sum_{i=1}^m\mu_i \xi_i \\ & = -\frac {1}{2}\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i +\sum_{i=1}^m C\xi_i-\sum_{i=1}^m \alpha_i \xi_i-\sum_{i=1}^m\mu_i \xi_i \\ & = -\frac {1}{2}\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i +\sum_{i=1}^m (C-\alpha_i-\mu_i)\xi_i \\ &=\sum _{i=1}^m\alpha_i-\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j \end{aligned} \]
\[再求\alpha極大\max\]
\[ \begin{aligned} &\max_{\alpha}\sum _{i=1}^m\alpha_i-\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j\\ 轉化爲\\ &\min_{\alpha}\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j-\sum _{i=1}^m\alpha_i\\ &s.t.\sum_{i=1}^m \alpha_i y_i=0 \\ &0 \leq\alpha_i \leq C \quad i=1,2,\dots ,m \end{aligned} \]
\[求最優解\alpha^*\]
\[ 計算獲得\\w^* = \sum_{i =1}^m{\alpha_i}^*y_ix_i\\ b^* = (\max_{i: y_i =1} w^*.x_i + \min_{i: y_i =-1} w^x* +x_i)/2\\ 分離獲得超平面:\\ w^*x+ b^* =0\\ 分類決策函數:\\ f(x) =sign(w^*x+b^*) \]
\[ \left\{\begin{array}{l} {\alpha_{i}\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i}\right)=0} \\ {\hat{\alpha}_{i}\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i}\right)=0} \\ {\alpha_{i} \hat{\alpha}_{i}=0, \xi_{i} \hat{\xi}_{i}=0} \\ {\left(C-\alpha_{i}\right) \xi_{i}=0,\left(C-\hat{\alpha}_{i}\right) \hat{\xi}_{i}=0} \end{array}\right. \]
\[推導以下:\\\]
\[ \left\{\begin{array}{l}2{f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i} \leq 0 } \\ 3{y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i} \leq 0 } \\ 4{-\xi_{i} \leq 0} \\5{-\hat{\xi}_{i} \leq 0}6\end{array}\right. \]
\[ \left\{\begin{array}{l} {\alpha_i\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i} \right) = 0 } \\ {\hat{\alpha}_i\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i} \right) = 0 } \\ {-\mu_i\xi_{i} = 0 \Rightarrow \mu_i\xi_{i} = 0 } \\ {-\hat{\mu}_i \hat{\xi}_{i} = 0 \Rightarrow \hat{\mu}_i \hat{\xi}_{i} = 0 } \end{array}\right. \]
\[\because\begin{aligned} \mu_i=C-\alpha_i \\ \hat{\mu}_i=C-\hat{\alpha}_i \end{aligned}\]
\[ \left\{\begin{array}{l} {\alpha_i\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i} \right) = 0 } \\ {\hat{\alpha}_i\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i} \right) = 0 } \\ {(C-\alpha_i)\xi_{i} = 0 } \\ {(C-\hat{\alpha}_i) \hat{\xi}_{i} = 0 } \end{array}\right. \]
\[前面硬間隔與軟間隔均處理線性問題,而對非線性問題須要將低維空間映射到高維空間,引入核函數\]
\[多項式核函數\]
\[ k(\vec x,\vec y)= (\vec x,\vec y +c)^2\\ =(\vec x, \vec y)^2+2c\vec x\vec y+c^2\\ =\sum_{i =1}^n \sum_{j=1}^m(x_ix_j)(y_iy_j)+\sum_{i=1}^m(\sqrt {2c}x_i \sqrt{2cy_i})+c^2 \]
\(高斯核函數\)
\[ k(\vec x_1,\vec x_2) = e^-\frac{x_1^2+x_2^2}{2\sigma^2}(1+\frac {x_1 x_2}{\sigma^2}+\frac{x_1^2+x_2^2}{2\sigma^2 \sigma^2}+...+\frac{x_1^n+x_2^n}{n!\sigma^n\sigma^n}) \]
\[ K(x,z) = (x,z)^p\\ 是正定核函數,此處p爲正整數,x,z爲R \]
\[ \begin{aligned} \min_{\boldsymbol{w,b,\xi}}\quad \frac{1}{2}||w||^2+C\sum_{i=1}^N{\xi_i}^2\\ s.t.\quad y_i(\boldsymbol w.{x_i}+b)\geq 1-\xi_i, i= 1,2,...,N\\ {\xi}_i \geq 0, i=1, 2,...,N \end{aligned}\\ 求其對偶形式 \]
[1] 《機器學習》 鄒博
[2] 《SVM的三重境界》 July
[3] 《pumpkin-book》 Datawhale
[4] 《機器學習》周志華
[5] 《機器學習實戰》Peter
[6] 《統計學習方法》李航,清華大學出版社,2012
[7] 《機器學習算法精講》 秦曾昌,2018