BitMap算法

1、bitmap算法思想 
    32位機器上,一個整形,好比int a; 在內存中佔32bit位,能夠用對應的32bit位對應十進制的0-31個數,bitmap算法利用這種思想處理大量數據的排序與查詢. 

    優勢:1.運算效率高,不準進行比較和移位;2.佔用內存少,好比N=10000000;只需佔用內存爲N/8=1250000Byte=1.25M。 
   缺點:全部的數據不能重複。即不可對重複的數據進行排序和查找。 

   好比: 
          第一個4就是 
          00000000000000000000000000010000 
          而輸入2的時候 
          00000000000000000000000000010100 
          輸入3時候 
          00000000000000000000000000011100 
          輸入1的時候 
          00000000000000000000000000011110 

    思想比較簡單,關鍵是十進制和二進制bit位須要一個map圖,把十進制的數映射到bit位。下面詳細說明這個map映射表。 
2、map映射表 
假設須要排序或者查找的總數N=10000000,那麼咱們須要申請內存空間的大小爲int a[1 + N/32],其中:a[0]在內存中佔32爲能夠對應十進制數0-31,依次類推: 
bitmap表爲: 

a[0]--------->0-31 
a[1]--------->32-63 
a[2]--------->64-95 
a[3]--------->96-127 
.......... 

那麼十進制數如何轉換爲對應的bit位,下面介紹用位移將十進制數轉換爲對應的bit位。 
3、位移轉換 
例如十進制0,對應在a[0]所佔的bit爲中的第一位: 
00000000000000000000000000000001 

0-31:對應在a[0]中 

i =0                        00000000000000000000000000000000 
temp=0                  00000000000000000000000000000000 
answer=1                00000000000000000000000000000001 
i =1                         00000000000000000000000000000001 
temp=1                   00000000000000000000000000000001 
answer=2                 00000000000000000000000000000010 
i =2                          00000000000000000000000000000010 
temp=2                    00000000000000000000000000000010 
answer=4                  00000000000000000000000000000100 
i =30                         00000000000000000000000000011110 
temp=30                   00000000000000000000000000011110 
answer=1073741824  01000000000000000000000000000000 
i =31                         00000000000000000000000000011111 
temp=31                   00000000000000000000000000011111 
answer=-2147483648 10000000000000000000000000000000 

32-63:對應在a[1]中 

i =32                    00000000000000000000000000100000 
temp=0                00000000000000000000000000000000 
answer=1              00000000000000000000000000000001 
i =33                     00000000000000000000000000100001 
temp=1                 00000000000000000000000000000001 
answer=2               00000000000000000000000000000010 
i =34                      00000000000000000000000000100010 
temp=2                  00000000000000000000000000000010 
answer=4                00000000000000000000000000000100 
i =61                       00000000000000000000000000111101 
temp=29                  00000000000000000000000000011101 
answer=536870912   00100000000000000000000000000000 
i =62                        00000000000000000000000000111110 
temp=30                   00000000000000000000000000011110 
answer=1073741824  01000000000000000000000000000000 
i =63                         00000000000000000000000000111111 
temp=31                   00000000000000000000000000011111 
answer=-2147483648 10000000000000000000000000000000 


淺析上面的對應表: 
1.求十進制0-N對應在數組a中的下標: 
十進制0-31,對應在a[0]中,先由十進制數n轉換爲與32的餘可轉化爲對應在數組a中的下標。好比n=24,那麼 n/32=0,則24對應在數組a中的下標爲0。又好比n=60,那麼n/32=1,則60對應在數組a中的下標爲1,同理能夠計算0-N在數組a中的下標。 

2.求0-N對應0-31中的數: 
十進制0-31就對應0-31,而32-63則對應也是0-31,即給定一個數n能夠經過模32求得對應0-31中的數。 

3.利用移位0-31使得對應32bit位爲1. 

4、編程實現 算法

#include <stdio.h>  
  
#define BITSPERWORD 32  
#define SHIFT 5  
#define MASK 0x1F  
#define N 10000000  
  
int a[1 + N/BITSPERWORD];//申請內存的大小  
  
//set 設置所在的bit位爲1  
//clr 初始化全部的bit位爲0  
//test 測試所在的bit爲是否爲1  
  
void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }  
void clr(int i) {        a[i>>SHIFT] &= ~(1<<(i & MASK)); }  
int  test(int i){ return a[i>>SHIFT] &   (1<<(i & MASK)); }  
  
int main()  
{   int i;  
    for (i = 0; i < N; i++)  
        clr(i);    
    while (scanf("%d", &i) != EOF)  
        set(i);  
    for (i = 0; i < N; i++)  
        if (test(i))  
            printf("%d\n", i);  
  
    return 0;  
}  

 



解析本例中的void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); } 

1.i>>SHIFT: 
其中SHIFT=5,即i右移5爲,2^5=32,至關於i/32,即求出十進制i對應在數組a中的下標。好比i=20,經過i>>SHIFT=20>>5=0 可求得i=20的下標爲0; 

2.i & MASK: 
其中MASK=0X1F,十六進制轉化爲十進制爲31,二進制爲0001 1111,i&(0001 1111)至關於保留i的後5位。 

好比i=23,二進制爲:0001 0111,那麼 
                         0001 0111 
                   &    0001 1111 = 0001 0111 十進制爲:23 
好比i=83,二進制爲:0000 0000 0101 0011,那麼 
                          0000 0000 0101 0011 
                     &   0000 0000 0001 0000 = 0000 0000 0001 0011 十進制爲:19 

i & MASK至關於i%32。 

3.1<<(i & MASK) 
至關於把1左移 (i & MASK)位。 
好比(i & MASK)=20,那麼i<<20就至關於: 
         0000 0000 0000 0000 0000 0000 0000 0001 >>20 
      =0000 0000 0000 1000 0000 0000 0000 0000 

4.void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }等價於: 
void set(int i) 

   a[i/32] |= (1<<(i%32)); 
}編程

轉發至https://weihe6666.iteye.com/blog/1184554數組

相關文章
相關標籤/搜索