前段時間,公司的IM SDK想作敏感詞過濾,可是後端的小夥伴《比較忙》,在開產品需求會的時候想把敏感詞過濾放到前端,讓iOS、安卓本身搞,可是前端小夥伴寫了一個方法來檢測一段文本,耗時【一兩秒】鍾並且比較耗CPU,這樣確定不行的,最後後端小夥伴妥協了,把敏感詞過濾放到後端了。前端
通常的思路多是遍歷敏感詞庫,而後把一段文字的敏感詞過濾掉,可是針對比較大的詞庫時(好比咱們的敏感詞庫10萬),這樣很是耗時和耗內存,在電腦上還能跑跑,可是在手機上分分鐘鐘被系統殺死掉,這樣確定是不行的,這裏就用到一種DFA算法。node
可是使用了DFA算法,十萬的敏感詞庫過濾一句話只須要【0.434510秒】!python
2019-10-23 14:34:08.230918+0800 DFAFilterDemo[4728:4650502] message == 小明罵小王是個王八蛋,小王罵小明是個王八羔子! 2019-10-23 14:34:08.232972+0800 DFAFilterDemo[4728:4650502] result == 小明罵小王是個***,小王罵小明是個王八羔子! 2019-10-23 14:34:08.316380+0800 DFAFilterDemo[4728:4650502] 總共耗時: 0.434510
何謂DFA,它的全稱是Deterministic Finite Automaton,即肯定有窮自動機;其特徵爲:有一個有限狀態集合和一些從一個狀態通向另外一個狀態的邊,每條邊上標記有一個符號,其中一個狀態是初態,某些狀態是終態。但不一樣於不肯定的有限自動機,DFA中不會有從同一狀態出發的兩條邊標誌有相同的符號;DFA算法的核心是創建了以敏感詞爲基礎的許多敏感詞樹。git
咱們先把敏感詞庫拆分解析成一個」敏感詞樹「,咱們以敏感詞」王八蛋「和」王八羔子「爲例:
拆成的敏感詞樹以下:
github
// // DFAFilter.m // DFAFilterDemo // // Created by 張福傑 on 2019/10/22. // Copyright © 2019 張福傑. All rights reserved. // #import "DFAFilter.h" @interface DFAFilter () @property (nonatomic,strong) NSMutableDictionary *keyword_chains; @property (nonatomic, copy) NSString *delimit; @end @implementation DFAFilter - (instancetype)init{ if(self == [super init]){ _delimit = @"\x00"; } return self; } /// 讀取解析敏感詞 - (void)parseSensitiveWords:(NSString *)path{ if(path == nil){ path = [[NSBundle mainBundle] pathForResource:@"sensitive_words" ofType:@"txt"]; } NSString *content = [[NSString alloc] initWithContentsOfFile:path encoding:NSUTF8StringEncoding error:nil]; NSArray *keyWordList = [content componentsSeparatedByString:@","]; for (NSString *keyword in keyWordList) { [self addSensitiveWords:keyword]; } NSLog(@"keyword_chains == %@",self.keyword_chains); } - (void)addSensitiveWords:(NSString *)keyword{ keyword = keyword.lowercaseString; keyword = [keyword stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]]; NSMutableDictionary *node = self.keyword_chains; for (int i = 0; i < keyword.length; i ++) { NSString *word = [keyword substringWithRange:NSMakeRange(i, 1)]; if (node[word] == nil) { node[word] = [NSMutableDictionary dictionary]; } node = node[word]; } //敏感詞最後一個字符標識 [node setValue:@0 forKey:self.delimit]; } - (NSString *)filterSensitiveWords:(NSString *)message replaceKey:(NSString *)replaceKey{ replaceKey = replaceKey == nil ? @"*" : replaceKey; message = message.lowercaseString; NSMutableArray *retArray = [[NSMutableArray alloc] init]; NSInteger start = 0; while (start < message.length) { NSMutableDictionary *level = self.keyword_chains.mutableCopy; NSInteger step_ins = 0; NSString *message_chars = [message substringWithRange:NSMakeRange(start, message.length - start)]; for(int i = 0; i < message_chars.length; i++){ NSString *chars_i = [message_chars substringWithRange:NSMakeRange(i, 1)]; if([level.allKeys containsObject:chars_i]){ step_ins += 1; NSDictionary *level_char_dict = level[chars_i]; if(![level_char_dict.allKeys containsObject:self.delimit]){ level = level_char_dict.mutableCopy; }else{ NSMutableString *ret_str = [[NSMutableString alloc] init]; for(int i = 0; i < step_ins; i++){ [ret_str appendString:replaceKey]; } [retArray addObject:ret_str]; start += (step_ins - 1); break; } }else{ [retArray addObject:[NSString stringWithFormat:@"%C",[message characterAtIndex:start]]]; break; } } start ++; } return [retArray componentsJoinedByString:@""]; } - (NSMutableDictionary *)keyword_chains{ if(_keyword_chains == nil){ _keyword_chains = [[NSMutableDictionary alloc] initWithDictionary:@{}]; } return _keyword_chains; } @end
// // DFAFilter.swift // DFAFilterDemo // // Created by 張福傑 on 2019/10/23. // Copyright © 2019 張福傑. All rights reserved. // import UIKit class DFAFilter: NSObject { lazy var keyword_chains: NSMutableDictionary = { let dict = NSMutableDictionary() return dict }() lazy var delimit: String = "\\x00"; /// 讀取敏感詞 func parseSensitiveWords() -> Void { let path = Bundle.main.path(forResource: "sensitive_words", ofType: "txt"); let url = URL(fileURLWithPath: path!) do { let data = try Data(contentsOf: url) let content: String = String(data: data, encoding: String.Encoding.utf8)! let keyWordList = content.components(separatedBy: ",") for keyword in keyWordList { addSensitiveWords(keyword) } } catch let error as Error? { print(error?.localizedDescription as Any) } } /// 添加敏感詞到敏感詞樹 func addSensitiveWords(_ keyword: String) -> Void { let keyword: String = keyword.lowercased().trimmingCharacters(in: .whitespacesAndNewlines) var node = self.keyword_chains if keyword.count <= 0{ return } for index in 0...keyword.count - 1 { let index0 = keyword.index(keyword.startIndex, offsetBy: index) let index1 = keyword.index(keyword.startIndex, offsetBy: index + 1) let word = keyword[index0..<index1] if node[word] == nil{ node[word] = NSMutableDictionary() } node = node[word] as! NSMutableDictionary } node[self.delimit] = 0 } /// 開始過濾敏感詞 func filterSensitiveWords(_ message: String, replaceKey: String) -> String { let replaceKey = replaceKey.count > 0 ? replaceKey : "*" let message = message.lowercased() let retArray: NSMutableArray = NSMutableArray() var start = 0 while start < message.count { var level: NSMutableDictionary = self.keyword_chains.mutableCopy() as! NSMutableDictionary var step_ins = 0 let message_chars = getChar(message, startIndex: start, endIndex: message.count) for index in 0...message_chars.count - 1 { let chars_i = getChar(message_chars, startIndex: index, endIndex: index + 1) if level[chars_i] != nil{ step_ins += 1 let level_char_dict: NSDictionary = level[chars_i] as! NSDictionary if level_char_dict[self.delimit] == nil{ level = level_char_dict.mutableCopy() as! NSMutableDictionary }else{ var ret_str = "" for _ in 0...step_ins - 1 { ret_str += replaceKey } retArray.add(ret_str) start += (step_ins - 1) break } }else{ let word = getChar(message, startIndex: start, endIndex: start + 1) retArray.add(word) break } } start += 1 } return retArray.componentsJoined(by: "") } func getChar(_ message: String, startIndex: NSInteger, endIndex: NSInteger) -> String { let index0 = message.index(message.startIndex, offsetBy: startIndex) let index1 = message.index(message.startIndex, offsetBy: endIndex) let word = message[index0..<index1] return String(word) } }
# -*- coding: utf-8 -*- # @Author: zhangfujie # @Date: 2019/10/22 # @Last Modified by: zhangfujie # @Last Modified time: 2019/10/22 # @ ---------- DFA過濾算 ---------- import time time1 = time.time() class DFAFilter(object): """DFA過濾算法""" def __init__(self): super(DFAFilter, self).__init__() self.keyword_chains = {} self.delimit = '\x00' # 讀取解析敏感詞 def parseSensitiveWords(self, path): ropen = open(path,'r') text = ropen.read() keyWordList = text.split(',') for keyword in keyWordList: self.addSensitiveWords(str(keyword).strip()) # 生成敏感詞樹 def addSensitiveWords(self, keyword): keyword = keyword.lower() chars = keyword.strip() if not chars: return level = self.keyword_chains for i in range(len(chars)): if chars[i] in level: level = level[chars[i]] else: if not isinstance(level, dict): break for j in range(i, len(chars)): level[chars[j]] = {} last_level, last_char = level, chars[j] level = level[chars[j]] last_level[last_char] = {self.delimit: 0} break if i == len(chars) - 1: level[self.delimit] = 0 # 過濾敏感詞 def filterSensitiveWords(self, message, repl="*"): message = message.lower() ret = [] start = 0 while start < len(message): level = self.keyword_chains step_ins = 0 message_chars = message[start:] for char in message_chars: if char in level: step_ins += 1 if self.delimit not in level[char]: level = level[char] else: ret.append(repl * step_ins) start += step_ins - 1 break else: ret.append(message[start]) break start += 1 return ''.join(ret) if __name__ == "__main__": gfw = DFAFilter() gfw.parseSensitiveWords('shieldwords.txt') text = "小明罵小王是個王八蛋,小王罵小明是個王八羔子!" result = gfw.filterSensitiveWords(text) print(result) time2 = time.time() print('總共耗時:' + str(time2 - time1) + 's')
demo下載地址: https://gitee.com/zfj1128/DFAFilterDemo
過往大佬喜歡的給個小星星吧!算法
歡迎各位大神提出寶貴的意見和建議,也歡迎你們進羣交流365152048!swift
CSDN博客 | https://zfj1128.blog.csdn.net |
---|---|
GITEE主頁 | https://gitee.com/zfj1128 |
GITHUB主頁 | https://github.com/zfjsyqk |