\(N \le 2000, M \le 2000\)
直接利用遞推式預處理便可。
代碼以下ios
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int main() { ios::sync_with_stdio(false); cin.tie(0), cout.tie(0); int n; cin >> n; static int f[2010][2010]; for (int i = 0; i <= 2000; i++) { f[i][0] = 1; } for (int i = 1; i <= 2000; i++) { for (int j = 1; j <= 2000; j++) { f[i][j] = (f[i - 1][j] + f[i - 1][j - 1]) % mod; } } while (n--) { int a, b; cin >> a >> b; cout << f[a][b] << endl; } return 0; }
\(N, M \le 1e5\)
預處理出階乘和階乘的逆元,利用組合數的定義直接回答。c++
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int mod = 1e9 + 7; const int maxn = 1e5 + 10; LL fpow(LL a, LL b) { LL ret = 1 % mod; for (; b; b >>= 1, a = a * a % mod) { if (b & 1) { ret = ret * a % mod; } } return ret; } int main() { ios::sync_with_stdio(false); cin.tie(0), cout.tie(0); int n; cin >> n; vector<LL> inv(maxn), fac(maxn); auto prework = [&]() { fac[0] = 1; for (int i = 1; i <= 1e5; i++) { fac[i] = fac[i - 1] * i % mod; } inv[1e5] = fpow(fac[1e5], mod - 2); for (int i = 1e5 - 1; i >= 0; i--) { inv[i] = inv[i + 1] * (i + 1) % mod; } }; prework(); auto get = [&](int a, int b) { return fac[a] * inv[a - b] % mod * inv[b] % mod; }; while (n--) { int a, b; cin >> a >> b; cout << get(a, b) << endl; } return 0; } /* (a, b) = a! / ((a - b)! * b!) a! = a * (a - 1)! a!' * a = (a - 1)!' */
\(N, M \le 1e18, p \le 1e5,p \in prime\)
預處理出 \(1...p\) 的階乘和階乘的逆元,用盧卡斯定理進行回答。
代碼以下spa
#include <bits/stdc++.h> using namespace std; typedef long long LL; LL fpow(LL a, LL b, LL c) { LL ret = 1 % c; for (; b; b >>= 1, a = a * a % c) { if (b & 1) { ret = ret * a % c; } } return ret; } int main() { ios::sync_with_stdio(false); cin.tie(0), cout.tie(0); int n; cin >> n; while (n--) { LL a, b, p; cin >> a >> b >> p; vector<LL> inv(p + 1), fac(p + 1); fac[0] = 1; for (int i = 1; i <= p; i++) { fac[i] = fac[i - 1] * i % p; } inv[p - 1] = fpow(fac[p - 1], p - 2, p); for (int i = p - 2; i >= 0; i--) { inv[i] = inv[i + 1] * (i + 1) % p; } auto C = [&](LL x, LL y) -> LL { if (x < y) { return 0; } return fac[x] * inv[x - y] % p * inv[y] % p; }; function<LL(LL, LL)> Lucas = [&](LL x, LL y) -> LL { if (y == 0) { return 1; } return C(x % p, y % p) * Lucas(x / p, y / p) % p; }; cout << Lucas(a, b) << endl; } return 0; }