LRU

1、LRU

Least Recently Used,即最近最少使用,當一個數據最近一段時間沒有被訪問,將來被訪問的機率也很小。當空間被佔滿後,最早淘汰最近最少使用的數據。java

2、LinkedHashMap

HashMap的存取是無序的,當咱們但願其有序時,就可使用LinkedHashMap。當LinkedHashMap的構造函數的accessOrder參數爲false時,按插入順序存取;當accessOrder爲true時,按訪問順序存取(新插入的元素放在表尾,剛訪問的元素也移動到表尾)。緩存

LinkedHashMap的組成就是一個HashMap+雙端鏈表。app

插入:ide

插入Entry1函數

插入Entry2ui

插入Entry3spa

更新:3d

3、LRU的實現

思路:code

  • 固定緩存大小,須要給緩存分配一個固定的大小。
  • 每次讀取緩存都會改變緩存的使用時間,將緩存的存在時間從新刷新。
  • 須要在緩存滿了後,將最近最久未使用的緩存刪除,再添加最新的緩存。

一、使用LinkedHashMap實現LRUorm

public class LRU1<K, V> {
    private final int MAX_CACHE_SIZE;
    private final float DEFAULT_LOAD_FACTORY = 0.75f;

    LinkedHashMap<K, V> map;

    public LRU1(int cacheSize) {
        MAX_CACHE_SIZE = cacheSize;
        int capacity = (int)Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTORY) + 1;
        /*
         * 第三個參數設置爲true,表明linkedlist按訪問順序排序,可做爲LRU緩存
         * 第三個參數設置爲false,表明按插入順序排序,可做爲FIFO緩存
         */
        map = new LinkedHashMap<K, V>(capacity, DEFAULT_LOAD_FACTORY, true) {
            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                return size() > MAX_CACHE_SIZE;
            }
        };
    }

    public synchronized void put(K key, V value) {
        map.put(key, value);
    }

    public synchronized V get(K key) {
        return map.get(key);
    }

    public synchronized void remove(K key) {
        map.remove(key);
    }

    public synchronized Set<Map.Entry<K, V>> getAll() {
        return map.entrySet();
    }

    @Override
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        for (Map.Entry<K, V> entry : map.entrySet()) {
            stringBuilder.append(String.format("%s: %s  ", entry.getKey(), entry.getValue()));
        }
        return stringBuilder.toString();
    }

    public static void main(String[] args) {
        LRU1<Integer, Integer> lru1 = new LRU1<>(5);
        lru1.put(1, 1);
        lru1.put(2, 2);
        lru1.put(3, 3);
        System.out.println(lru1);
        lru1.get(1);
        System.out.println(lru1);
        lru1.put(4, 4);
        lru1.put(5, 5);
        lru1.put(6, 6);
        System.out.println(lru1);
    }
}

結果:

二、用HashMap和鏈表實現:

主要的思想和上述基本一致,每次添加元素或者讀取元素就將元素放置在鏈表的頭,當緩存滿了以後,就能夠將尾結點元素刪除,這樣就實現了LRU緩存。

這種方法中是經過本身編寫代碼移動結點和刪除結點,爲了防止緩存大小超過限制,每次進行put的時候都會進行檢查,若緩存滿了則刪除尾部元素。

public class LRU2<K, V> {
    private final int MAX_CACHE_SIZE;
    private Entry<K, V> head;
    private Entry<K, V> tail;

    private HashMap<K, Entry<K, V>> cache;

    public LRU2(int cacheSize) {
        MAX_CACHE_SIZE = cacheSize;
        cache = new HashMap<>();
    }

    public void put(K key, V value) {
        Entry<K, V> entry = getEntry(key);
        if (entry == null) {
            if (cache.size() >= MAX_CACHE_SIZE) {
                cache.remove(tail.key);
                removeTail();
            }
            entry = new Entry<>();
            entry.key = key;
            entry.value = value;
            moveToHead(entry);
            cache.put(key, entry);
        } else {
            entry.value = value;
            moveToHead(entry);
        }
    }

    public V get(K key) {
        Entry<K, V> entry = getEntry(key);
        if (entry == null) {
            return null;
        }
        moveToHead(entry);
        return entry.value;
    }

    public void remove(K key) {
        Entry<K, V> entry = getEntry(key);
        if (entry != null) {
            if (entry == head) {
                Entry<K, V> next = head.next;
                head.next = null;
                head = next;
                head.pre = null;
            } else if (entry == tail) {
                Entry<K, V> prev = tail.pre;
                tail.pre = null;
                tail = prev;
                tail.next = null;
            } else {
                entry.pre.next = entry.next;
                entry.next.pre = entry.pre;
            }
            cache.remove(key);
        }
    }

    private void removeTail() {
        if (tail != null) {
            Entry<K, V> prev = tail.pre;
            if (prev == null) {
                head = null;
                tail = null;
            } else {
                tail.pre = null;
                tail = prev;
                tail.next = null;
            }
        }
    }

    private void moveToHead(Entry<K, V> entry) {
        if (entry == head) {
            return;
        }
        if (entry.pre != null) {
            entry.pre.next = entry.next;
        }
        if (entry.next != null) {
            entry.next.pre = entry.pre;
        }
        if (entry == tail) {
            Entry<K, V> prev = entry.pre;
            if (prev != null) {
                tail.pre = null;
                tail = prev;
                tail.next = null;
            }
        }

        if (head == null || tail == null) {
            head = tail = entry;
            return;
        }

        entry.next = head;
        head.pre = entry;
        entry.pre = null;
        head = entry;
    }

    private Entry<K, V> getEntry(K key) {
        return cache.get(key);
    }

    private static class Entry<K, V> {
        Entry<K, V> pre;
        Entry<K, V> next;
        K key;
        V value;
    }

    @Override
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        Entry<K, V> entry = head;
        while (entry != null) {
            stringBuilder.append(String.format("%s:%s ", entry.key, entry.value));
            entry = entry.next;
        }
        return stringBuilder.toString();
    }

    public static void main(String[] args) {
        LRU2<Integer, Integer> lru2 = new LRU2<>(5);
        lru2.put(1, 1);
        System.out.println(lru2);
        lru2.put(2, 2);
        System.out.println(lru2);
        lru2.put(3, 3);
        System.out.println(lru2);
        lru2.get(1);
        System.out.println(lru2);
        lru2.put(4, 4);
        lru2.put(5, 5);
        lru2.put(6, 6);
        System.out.println(lru2);
    }
}

結果:

相關文章
相關標籤/搜索