python數據分析——數據篩選實例【茅臺】

import tushare as ts import pandas as pd from pandas import DataFrame,Series

DataFrame

- 索引:
    - df[col] df[[c1,c2]]:取列
    - df.loc[index] : 取行
    - df.loc[index,col] : 取元素
- 切片:
    - df[a:b]:切行
    - df.loc[:,a:b]:切列
- df運算:Series運算一致
- df級聯:拼接
In [8]:
df = pd.read_csv('maotai.csv',index_col='date',parse_dates=['date']) df.drop(labels='Unnamed: 0',axis=1,inplace=True) df 
Out[8]:
  open close high low volume code
date            
2001-08-27 5.392 5.554 5.902 5.132 406318.00 600519
2001-08-28 5.467 5.759 5.781 5.407 129647.79 600519
2001-08-29 5.777 5.684 5.781 5.640 53252.75 600519
2001-08-30 5.668 5.796 5.860 5.624 48013.06 600519
2001-08-31 5.804 5.782 5.877 5.749 23231.48 600519
2001-09-03 5.812 5.779 5.870 5.757 22112.09 600519
2001-09-04 5.782 5.852 5.949 5.762 37006.77 600519
2001-09-05 5.876 5.849 5.924 5.813 26066.95 600519
2001-09-06 5.835 5.734 5.854 5.704 28997.03 600519
2001-09-07 5.702 5.574 5.773 5.570 31552.25 600519
2001-09-10 5.531 5.734 5.757 5.470 18878.89 600519
2001-09-11 5.749 5.670 5.773 5.656 11390.81 600519
2001-09-12 5.520 5.621 5.656 5.515 25045.19 600519
2001-09-13 5.626 5.607 5.671 5.577 10986.68 600519
2001-09-14 5.626 5.671 5.702 5.593 7672.83 600519
2001-09-17 5.637 5.599 5.670 5.546 8983.97 600519
2001-09-18 5.606 5.663 5.710 5.601 10773.26 600519
2001-09-19 5.671 5.768 5.768 5.634 8650.53 600519
2001-09-20 5.765 5.720 5.788 5.702 11173.35 600519
2001-09-21 5.668 5.634 5.718 5.624 7879.72 600519
2001-09-24 5.634 5.632 5.685 5.624 4068.60 600519
2001-09-25 5.668 5.660 5.709 5.632 3488.45 600519
2001-09-26 5.642 5.637 5.699 5.624 4956.26 600519
2001-09-27 5.637 5.734 5.777 5.624 8778.04 600519
2001-09-28 5.765 5.795 5.812 5.702 17088.47 600519
2001-10-08 5.781 5.715 5.809 5.663 6552.17 600519
2001-10-09 5.718 5.827 5.859 5.718 9558.52 600519
2001-10-10 5.827 5.640 5.848 5.629 17548.69 600519
2001-10-11 5.626 5.585 5.702 5.570 12306.84 600519
2001-10-12 5.609 5.624 5.726 5.320 20010.70 600519
... ... ... ... ... ... ...
2019-01-16 658.000 661.100 665.650 653.600 42083.00 600519
2019-01-17 663.000 659.250 669.700 655.800 30284.00 600519
2019-01-18 665.000 683.610 690.200 661.500 68609.00 600519
2019-01-21 690.000 686.980 698.880 681.880 47051.00 600519
2019-01-22 686.000 671.000 686.000 665.220 42122.00 600519
2019-01-23 667.220 665.660 674.500 663.130 33624.00 600519
2019-01-24 670.300 672.500 677.830 664.680 29155.00 600519
2019-01-25 675.880 679.700 684.900 669.930 28986.00 600519
2019-01-28 684.000 677.000 693.980 676.030 36102.00 600519
2019-01-29 677.500 685.000 688.000 668.000 30342.00 600519
2019-01-30 684.990 676.000 686.220 676.000 22699.00 600519
2019-01-31 680.000 689.600 689.600 677.560 36696.00 600519
2019-02-01 697.040 692.670 699.000 689.610 30520.00 600519
2019-02-11 695.000 725.300 729.500 688.180 58140.00 600519
2019-02-12 723.000 717.920 725.490 715.200 35091.00 600519
2019-02-13 723.000 735.250 736.160 717.220 35677.00 600519
2019-02-14 731.200 737.160 743.660 730.140 32258.00 600519
2019-02-15 734.880 724.780 734.880 723.020 23237.00 600519
2019-02-18 731.000 740.000 744.950 731.000 37745.00 600519
2019-02-19 740.960 730.760 742.500 726.660 29501.00 600519
2019-02-20 735.000 722.000 735.000 716.060 37882.00 600519
2019-02-21 720.000 720.250 730.480 717.000 29850.00 600519
2019-02-22 717.000 726.010 728.490 714.100 25908.00 600519
2019-02-25 730.750 742.330 744.440 717.990 82622.00 600519
2019-02-26 747.800 727.350 749.180 726.000 57964.00 600519
2019-02-27 733.000 740.700 758.020 731.000 65942.00 600519
2019-02-28 737.900 755.010 763.420 736.950 56986.00 600519
2019-03-01 761.500 789.300 790.000 761.000 63840.00 600519
2019-03-04 795.000 781.860 798.330 777.220 84585.00 600519
2019-03-05 785.000 779.780 789.550 775.880 44830.00 600519

4174 rows × 6 columnshtml

In [9]:
#假如我從2010年1月1日開始,每個月第一個交易日買入1手股票,每一年最後一個交易日賣出全部股票,到今天爲止,個人收益如何? price_last = df['open'][-1] df = df['2010':'2019'] #剔除首尾無用的數據 #Pandas提供了resample函數用便捷的方式對時間序列進行重採樣,根據時間粒度的變大或者變小分爲降採樣和升採樣: df_monthly = df.resample("M").first() df_yearly = df.resample("Y").last()[:-1] #去除最後一年 cost_money = 0 hold = 0 #每一年持有的股票 for year in range(2010, 2020): cost_money -= df_monthly.loc[str(year)]['open'].sum()*100 hold += len(df_monthly[str(year)]['open']) * 100 if year != 2019: cost_money += df_yearly[str(year)]['open'][0] * hold hold = 0 #每一年持有的股票 cost_money += hold * price_last print(cost_money) 
 
310250.69999999984
In [7]:
Out[7]:
  open close high low volume code
date            
2010-01-04 109.760 108.446 109.760 108.044 44304.88 600519
2010-01-05 109.116 108.127 109.441 107.846 31513.18 600519
2010-01-06 107.840 106.417 108.165 106.129 39889.03 600519
2010-01-07 106.417 104.477 106.691 103.302 48825.55 600519
2010-01-08 104.655 103.379 104.655 102.167 36702.09 600519
2010-01-11 104.400 102.926 105.230 102.422 24461.03 600519
2010-01-12 103.028 105.708 106.040 102.492 31063.40 600519
2010-01-13 104.649 103.022 105.389 102.741 37924.44 600519
2010-01-14 103.379 107.552 107.974 103.379 46454.64 600519
2010-01-15 107.533 108.401 110.641 107.533 45938.50 600519
2010-01-18 108.484 109.110 109.926 108.420 21461.53 600519
2010-01-19 109.116 108.337 109.441 108.165 17818.91 600519
2010-01-20 108.427 105.881 108.580 105.804 20972.95 600519
2010-01-21 105.842 106.397 107.450 105.613 17257.48 600519
2010-01-22 106.314 104.738 106.755 103.309 25432.94 600519
2010-01-25 104.560 105.957 106.761 103.704 23239.15 600519
2010-01-26 107.380 106.378 108.593 105.038 32889.16 600519
2010-01-27 105.951 104.643 107.068 104.400 19316.57 600519
2010-01-28 104.566 107.974 108.708 104.336 30267.52 600519
2010-01-29 108.452 107.552 108.612 107.004 37172.82 600519
2010-02-01 107.769 107.776 108.216 106.576 29655.94 600519
2010-02-02 107.208 106.263 108.484 106.117 15493.53 600519
2010-02-03 106.066 105.887 107.272 104.783 23034.65 600519
2010-02-04 105.868 107.591 108.006 105.376 22475.33 600519
2010-02-05 106.959 109.282 109.684 106.570 26234.30 600519
2010-02-08 109.282 109.269 112.058 108.816 31496.10 600519
2010-02-09 109.760 109.193 110.609 108.822 14151.24 600519
2010-02-10 109.760 109.652 110.137 108.931 6398.14 600519
2010-02-11 109.633 110.641 111.318 109.505 14945.05 600519
2010-02-12 111.018 110.456 111.164 109.888 9346.40 600519
... ... ... ... ... ... ...
2019-01-16 658.000 661.100 665.650 653.600 42083.00 600519
2019-01-17 663.000 659.250 669.700 655.800 30284.00 600519
2019-01-18 665.000 683.610 690.200 661.500 68609.00 600519
2019-01-21 690.000 686.980 698.880 681.880 47051.00 600519
2019-01-22 686.000 671.000 686.000 665.220 42122.00 600519
2019-01-23 667.220 665.660 674.500 663.130 33624.00 600519
2019-01-24 670.300 672.500 677.830 664.680 29155.00 600519
2019-01-25 675.880 679.700 684.900 669.930 28986.00 600519
2019-01-28 684.000 677.000 693.980 676.030 36102.00 600519
2019-01-29 677.500 685.000 688.000 668.000 30342.00 600519
2019-01-30 684.990 676.000 686.220 676.000 22699.00 600519
2019-01-31 680.000 689.600 689.600 677.560 36696.00 600519
2019-02-01 697.040 692.670 699.000 689.610 30520.00 600519
2019-02-11 695.000 725.300 729.500 688.180 58140.00 600519
2019-02-12 723.000 717.920 725.490 715.200 35091.00 600519
2019-02-13 723.000 735.250 736.160 717.220 35677.00 600519
2019-02-14 731.200 737.160 743.660 730.140 32258.00 600519
2019-02-15 734.880 724.780 734.880 723.020 23237.00 600519
2019-02-18 731.000 740.000 744.950 731.000 37745.00 600519
2019-02-19 740.960 730.760 742.500 726.660 29501.00 600519
2019-02-20 735.000 722.000 735.000 716.060 37882.00 600519
2019-02-21 720.000 720.250 730.480 717.000 29850.00 600519
2019-02-22 717.000 726.010 728.490 714.100 25908.00 600519
2019-02-25 730.750 742.330 744.440 717.990 82622.00 600519
2019-02-26 747.800 727.350 749.180 726.000 57964.00 600519
2019-02-27 733.000 740.700 758.020 731.000 65942.00 600519
2019-02-28 737.900 755.010 763.420 736.950 56986.00 600519
2019-03-01 761.500 789.300 790.000 761.000 63840.00 600519
2019-03-04 795.000 781.860 798.330 777.220 84585.00 600519
2019-03-05 785.000 779.780 789.550 775.880 44830.00 600519

2221 rows × 6 columnspython

import numpy as np import pandas as pd import matplotlib.pyplot as plt import tushare as ts 
 

使用tushare包獲取某股票的歷史行情數據app

In [14]:
df = ts.get_k_data("600519",start="1988-01-01") df.to_csv("600519.csv") df 
Out[14]:
  date open close high low volume code
0 2001-08-27 5.392 5.554 5.902 5.132 406318.00 600519
1 2001-08-28 5.467 5.759 5.781 5.407 129647.79 600519
2 2001-08-29 5.777 5.684 5.781 5.640 53252.75 600519
3 2001-08-30 5.668 5.796 5.860 5.624 48013.06 600519
4 2001-08-31 5.804 5.782 5.877 5.749 23231.48 600519
5 2001-09-03 5.812 5.779 5.870 5.757 22112.09 600519
6 2001-09-04 5.782 5.852 5.949 5.762 37006.77 600519
7 2001-09-05 5.876 5.849 5.924 5.813 26066.95 600519
8 2001-09-06 5.835 5.734 5.854 5.704 28997.03 600519
9 2001-09-07 5.702 5.574 5.773 5.570 31552.25 600519
10 2001-09-10 5.531 5.734 5.757 5.470 18878.89 600519
11 2001-09-11 5.749 5.670 5.773 5.656 11390.81 600519
12 2001-09-12 5.520 5.621 5.656 5.515 25045.19 600519
13 2001-09-13 5.626 5.607 5.671 5.577 10986.68 600519
14 2001-09-14 5.626 5.671 5.702 5.593 7672.83 600519
15 2001-09-17 5.637 5.599 5.670 5.546 8983.97 600519
16 2001-09-18 5.606 5.663 5.710 5.601 10773.26 600519
17 2001-09-19 5.671 5.768 5.768 5.634 8650.53 600519
18 2001-09-20 5.765 5.720 5.788 5.702 11173.35 600519
19 2001-09-21 5.668 5.634 5.718 5.624 7879.72 600519
20 2001-09-24 5.634 5.632 5.685 5.624 4068.60 600519
21 2001-09-25 5.668 5.660 5.709 5.632 3488.45 600519
22 2001-09-26 5.642 5.637 5.699 5.624 4956.26 600519
23 2001-09-27 5.637 5.734 5.777 5.624 8778.04 600519
24 2001-09-28 5.765 5.795 5.812 5.702 17088.47 600519
25 2001-10-08 5.781 5.715 5.809 5.663 6552.17 600519
26 2001-10-09 5.718 5.827 5.859 5.718 9558.52 600519
27 2001-10-10 5.827 5.640 5.848 5.629 17548.69 600519
28 2001-10-11 5.626 5.585 5.702 5.570 12306.84 600519
29 2001-10-12 5.609 5.624 5.726 5.320 20010.70 600519
... ... ... ... ... ... ... ...
4118 2018-12-07 595.600 587.000 598.860 584.700 26841.00 600519
4119 2018-12-10 576.000 577.230 587.500 574.180 24640.00 600519
4120 2018-12-11 577.000 582.990 586.550 577.000 16316.00 600519
4121 2018-12-12 588.790 589.000 589.200 582.800 19921.00 600519
4122 2018-12-13 590.000 601.750 606.880 589.600 40399.00 600519
4123 2018-12-14 598.010 592.960 599.800 592.000 24554.00 600519
4124 2018-12-17 592.570 590.520 595.970 585.010 24895.00 600519
4125 2018-12-18 585.880 590.940 591.540 585.000 19222.00 600519
4126 2018-12-19 589.000 577.800 590.990 576.030 25715.00 600519
4127 2018-12-20 576.220 574.500 581.500 568.890 26940.00 600519
4128 2018-12-21 571.000 567.410 573.450 562.210 30640.00 600519
4129 2018-12-24 563.500 568.000 570.910 558.000 19109.00 600519
4130 2018-12-25 562.220 565.790 567.500 553.610 26592.00 600519
4131 2018-12-26 563.810 560.080 568.400 558.000 17866.00 600519
4132 2018-12-27 570.000 563.000 571.850 562.220 29493.00 600519
4133 2018-12-28 563.300 590.010 596.400 560.000 63678.00 600519
4134 2019-01-02 609.980 598.980 612.000 595.010 62286.00 600519
4135 2019-01-03 599.970 590.000 601.660 585.800 30977.00 600519
4136 2019-01-04 587.280 602.000 607.670 582.020 37683.00 600519
4137 2019-01-07 608.000 605.490 612.000 602.220 34750.00 600519
4138 2019-01-08 605.500 604.790 612.000 600.280 28838.00 600519
4139 2019-01-09 609.990 616.120 626.160 609.040 49892.00 600519
4140 2019-01-10 617.130 618.770 624.880 610.250 29043.00 600519
4141 2019-01-11 625.000 635.880 637.000 618.750 38884.00 600519
4142 2019-01-14 633.000 624.600 635.890 621.550 25648.00 600519
4143 2019-01-15 627.860 659.980 661.500 625.000 55764.00 600519
4144 2019-01-16 658.000 661.100 665.650 653.600 42083.00 600519
4145 2019-01-17 663.000 659.250 669.700 655.800 30284.00 600519
4146 2019-01-18 665.000 683.610 690.200 661.500 68609.00 600519
4147 2019-01-21 690.000 686.980 698.880 681.880 47051.00 600519

4148 rows × 7 columns函數

In [15]:
df.head() 
Out[15]:
  date open close high low volume code
0 2001-08-27 5.392 5.554 5.902 5.132 406318.00 600519
1 2001-08-28 5.467 5.759 5.781 5.407 129647.79 600519
2 2001-08-29 5.777 5.684 5.781 5.640 53252.75 600519
3 2001-08-30 5.668 5.796 5.860 5.624 48013.06 600519
4 2001-08-31 5.804 5.782 5.877 5.749 23231.48 600519
In [20]:
df = pd.read_csv("600519.csv", index_col='date',parse_dates=['date'])[['open','close','high','low']] df.head() 
Out[20]:
  open close high low
date        
2001-08-27 5.392 5.554 5.902 5.132
2001-08-28 5.467 5.759 5.781 5.407
2001-08-29 5.777 5.684 5.781 5.640
2001-08-30 5.668 5.796 5.860 5.624
2001-08-31 5.804 5.782 5.877 5.749
 

輸出該股票全部收盤比開盤上漲3%以上的日期spa

In [19]:
df[(df['close']-df['open'])/df['open']>=0.03].index 
Out[19]:
DatetimeIndex(['2001-08-27', '2001-08-28', '2001-09-10', '2001-12-21',
               '2002-01-18', '2002-01-31', '2003-01-14', '2003-10-29',
               '2004-01-05', '2004-01-14',
               ...
               '2018-06-20', '2018-08-09', '2018-08-21', '2018-08-27',
               '2018-09-18', '2018-09-26', '2018-10-19', '2018-10-31',
               '2018-11-13', '2018-12-28'],
              dtype='datetime64[ns]', name='date', length=291, freq=None)
 

輸出該股票全部開盤比前日收盤跌幅超過2%的日期code

In [20]:
df[(df['open']-df['close'].shift(1))/df['close'].shift(1)<=-0.02].index 
Out[20]:
DatetimeIndex(['2001-09-12', '2002-06-26', '2002-12-13', '2004-07-01',
               '2004-10-29', '2006-08-21', '2006-08-23', '2007-01-25',
               '2007-02-01', '2007-02-06', '2007-03-19', '2007-05-21',
               '2007-05-30', '2007-06-05', '2007-07-27', '2007-09-05',
               '2007-09-10', '2008-03-13', '2008-03-17', '2008-03-25',
               '2008-03-27', '2008-04-22', '2008-04-23', '2008-04-29',
               '2008-05-13', '2008-06-10', '2008-06-13', '2008-06-24',
               '2008-06-27', '2008-08-11', '2008-08-19', '2008-09-23',
               '2008-10-10', '2008-10-15', '2008-10-16', '2008-10-20',
               '2008-10-23', '2008-10-27', '2008-11-06', '2008-11-12',
               '2008-11-20', '2008-11-21', '2008-12-02', '2009-02-27',
               '2009-03-25', '2009-08-13', '2010-04-26', '2010-04-30',
               '2011-08-05', '2012-03-27', '2012-08-10', '2012-11-22',
               '2012-12-04', '2012-12-24', '2013-01-16', '2013-01-25',
               '2013-09-02', '2014-04-25', '2015-01-19', '2015-05-25',
               '2015-07-03', '2015-07-08', '2015-07-13', '2015-08-24',
               '2015-09-02', '2015-09-15', '2017-11-17', '2018-02-06',
               '2018-02-09', '2018-03-23', '2018-03-28', '2018-07-11',
               '2018-10-11', '2018-10-24', '2018-10-25', '2018-10-29',
               '2018-10-30'],
              dtype='datetime64[ns]', name='date', freq=None)
 

假如我從2010年1月1日開始,每個月第一個交易日買入1手股票,每一年最後一個交易日賣出全部股票,到今天爲止,個人收益如何?htm

In [21]:
df['open'][-1] 
Out[21]:
690.0
In [22]:
price_last = df['open'][-1] df = df['2010-01':'2019-01'] #剔除首尾無用的數據 df 
Out[22]:
  open close high low
date        
2010-01-04 109.760 108.446 109.760 108.044
2010-01-05 109.116 108.127 109.441 107.846
2010-01-06 107.840 106.417 108.165 106.129
2010-01-07 106.417 104.477 106.691 103.302
2010-01-08 104.655 103.379 104.655 102.167
2010-01-11 104.400 102.926 105.230 102.422
2010-01-12 103.028 105.708 106.040 102.492
2010-01-13 104.649 103.022 105.389 102.741
2010-01-14 103.379 107.552 107.974 103.379
2010-01-15 107.533 108.401 110.641 107.533
2010-01-18 108.484 109.110 109.926 108.420
2010-01-19 109.116 108.337 109.441 108.165
2010-01-20 108.427 105.881 108.580 105.804
2010-01-21 105.842 106.397 107.450 105.613
2010-01-22 106.314 104.738 106.755 103.309
2010-01-25 104.560 105.957 106.761 103.704
2010-01-26 107.380 106.378 108.593 105.038
2010-01-27 105.951 104.643 107.068 104.400
2010-01-28 104.566 107.974 108.708 104.336
2010-01-29 108.452 107.552 108.612 107.004
2010-02-01 107.769 107.776 108.216 106.576
2010-02-02 107.208 106.263 108.484 106.117
2010-02-03 106.066 105.887 107.272 104.783
2010-02-04 105.868 107.591 108.006 105.376
2010-02-05 106.959 109.282 109.684 106.570
2010-02-08 109.282 109.269 112.058 108.816
2010-02-09 109.760 109.193 110.609 108.822
2010-02-10 109.760 109.652 110.137 108.931
2010-02-11 109.633 110.641 111.318 109.505
2010-02-12 111.018 110.456 111.164 109.888
... ... ... ... ...
2018-12-07 595.600 587.000 598.860 584.700
2018-12-10 576.000 577.230 587.500 574.180
2018-12-11 577.000 582.990 586.550 577.000
2018-12-12 588.790 589.000 589.200 582.800
2018-12-13 590.000 601.750 606.880 589.600
2018-12-14 598.010 592.960 599.800 592.000
2018-12-17 592.570 590.520 595.970 585.010
2018-12-18 585.880 590.940 591.540 585.000
2018-12-19 589.000 577.800 590.990 576.030
2018-12-20 576.220 574.500 581.500 568.890
2018-12-21 571.000 567.410 573.450 562.210
2018-12-24 563.500 568.000 570.910 558.000
2018-12-25 562.220 565.790 567.500 553.610
2018-12-26 563.810 560.080 568.400 558.000
2018-12-27 570.000 563.000 571.850 562.220
2018-12-28 563.300 590.010 596.400 560.000
2019-01-02 609.980 598.980 612.000 595.010
2019-01-03 599.970 590.000 601.660 585.800
2019-01-04 587.280 602.000 607.670 582.020
2019-01-07 608.000 605.490 612.000 602.220
2019-01-08 605.500 604.790 612.000 600.280
2019-01-09 609.990 616.120 626.160 609.040
2019-01-10 617.130 618.770 624.880 610.250
2019-01-11 625.000 635.880 637.000 618.750
2019-01-14 633.000 624.600 635.890 621.550
2019-01-15 627.860 659.980 661.500 625.000
2019-01-16 658.000 661.100 665.650 653.600
2019-01-17 663.000 659.250 669.700 655.800
2019-01-18 665.000 683.610 690.200 661.500
2019-01-21 690.000 686.980 698.880 681.880

2195 rows × 4 columns索引

In [28]:
df_monthly = df.resample("M").first() df_monthly.head() 
Out[28]:
  open close high low
date        
2010-01-31 109.760 108.446 109.760 108.044
2010-02-28 107.769 107.776 108.216 106.576
2010-03-31 106.219 106.085 106.857 105.925
2010-04-30 101.324 102.141 102.422 101.311
2010-05-31 81.676 82.091 82.678 80.974
In [29]:
df_yearly = df.resample("A").last()[:-1] #去除最後一年 df_yearly 
Out[29]:
  open close high low
date        
2010-12-31 117.103 118.469 118.701 116.620
2011-12-31 138.039 138.468 139.600 136.105
2012-12-31 155.208 152.087 156.292 150.144
2013-12-31 93.188 96.480 97.179 92.061
2014-12-31 157.642 161.056 161.379 157.132
2015-12-31 207.487 207.458 208.704 207.106
2016-12-31 317.239 324.563 325.670 317.239
2017-12-31 707.948 687.725 716.329 681.918
2018-12-31 563.300 590.010 596.400 560.000
In [31]:
df_monthly.loc[str(year)] 
Out[31]:
  open close high low
date        
2018-01-31 690.200 693.996 700.218 680.232
2018-02-28 756.262 747.122 756.558 742.379
2018-03-31 717.808 731.582 736.394 713.637
2018-04-30 670.480 670.539 681.326 664.673
2018-05-31 650.760 658.480 659.624 636.029
2018-06-30 740.614 734.679 744.410 728.417
2018-07-31 734.520 711.550 739.330 703.000
2018-08-31 731.400 714.940 732.300 714.110
2018-09-30 652.000 666.210 667.670 650.800
2018-10-31 715.410 686.150 719.000 686.150
2018-11-30 555.000 563.000 585.500 551.250
2018-12-31 589.000 601.200 605.000 584.770
In [33]:
cost_money = 0 hold = 0 #每一年持有的股票 for year in range(2010, 2020): cost_money -= df_monthly.loc[str(year)]['open'].sum()*100 hold += len(df_monthly[str(year)]['open']) * 100 if year != 2019: cost_money += df_yearly[str(year)]['open'][0] * hold hold = 0 #每一年持有的股票 #print(cost_money) cost_money += hold * price_last print(cost_money) # df_monthly['2001'] 
 
289604.69999999984
In [56]:
df['2017'] 
Out[56]:
  open close high low
date        
2017-01-03 329.299 329.575 331.979 327.851
2017-01-04 329.634 346.667 346.923 329.615
2017-01-05 344.785 341.574 346.213 340.293
2017-01-06 341.475 345.534 354.419 340.943
2017-01-09 342.618 343.317 347.622 341.377
2017-01-10 343.258 343.800 346.755 341.436
2017-01-11 342.815 340.303 342.815 338.382
2017-01-12 341.386 341.879 342.224 339.377
2017-01-13 341.810 339.731 342.214 338.756
2017-01-16 339.003 336.382 339.663 333.752
2017-01-17 337.495 343.928 346.263 336.904
2017-01-18 343.682 349.789 351.454 342.037
2017-01-19 349.711 349.435 353.139 346.460
2017-01-20 349.612 349.701 352.075 347.770
2017-01-23 351.563 345.987 354.439 344.253
2017-01-24 346.036 345.090 347.543 341.583
2017-01-25 344.765 342.450 344.765 341.042
2017-01-26 342.953 339.288 343.603 336.215
2017-02-03 340.845 341.682 343.977 339.860
2017-02-06 343.298 341.682 343.692 339.820
2017-02-07 341.672 338.461 342.224 338.027
2017-02-08 338.638 339.081 340.352 337.564
2017-02-09 339.860 342.431 343.593 339.475
2017-02-10 343.426 339.938 344.608 339.860
2017-02-13 338.874 344.539 346.657 336.825
2017-02-14 344.332 344.992 347.346 343.898
2017-02-15 346.263 343.337 347.189 342.027
2017-02-16 343.307 342.904 343.426 340.362
2017-02-17 343.701 345.337 349.159 342.322
2017-02-20 345.189 355.907 356.921 344.795
... ... ... ... ...
2017-10-20 581.000 574.330 581.000 571.760
2017-10-23 574.920 573.410 580.500 568.000
2017-10-24 572.000 567.330 573.800 563.610
2017-10-25 569.750 565.670 571.680 562.060
2017-10-26 605.000 605.090 613.000 591.910
2017-10-27 602.110 649.630 655.000 600.030
2017-10-30 643.050 622.080 644.000 621.000
2017-10-31 622.010 618.030 627.600 611.880
2017-11-01 620.880 623.010 631.540 619.220
2017-11-02 626.950 626.920 629.780 621.000
2017-11-03 628.650 639.170 643.440 628.650
2017-11-06 641.500 653.060 657.620 640.200
2017-11-07 650.580 642.070 657.150 638.180
2017-11-08 642.330 650.380 654.500 642.330
2017-11-09 648.000 650.070 654.150 644.610
2017-11-10 650.430 677.950 683.400 650.430
2017-11-13 680.000 687.880 692.780 675.800
2017-11-14 687.140 678.750 687.220 677.350
2017-11-15 678.750 688.080 689.990 674.000
2017-11-16 686.010 719.110 719.960 686.010
2017-11-17 696.000 690.250 709.000 677.770
2017-11-20 676.800 679.150 685.600 660.000
2017-11-21 669.000 677.250 688.800 662.020
2017-11-22 677.000 650.520 688.000 650.000
2017-11-23 642.000 633.730 646.000 630.220
2017-11-24 635.900 630.040 642.500 622.230
2017-11-27 634.000 621.290 636.330 613.010
2017-11-28 625.060 648.230 648.880 624.000
2017-11-29 649.940 638.120 651.970 634.010
2017-11-30 635.510 631.000 648.480 626.000

223 rows × 4 columnsip

相關文章
相關標籤/搜索