新建項目後在pom.xml中添加依賴:java
<dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>jdk.tools</groupId> <artifactId>jdk.tools</artifactId> <version>1.8</version> <scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath> </dependency>
public static Configuration conf; static{ //使用HBaseConfiguration的單例方法實例化 conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", "192.168.9.102"); conf.set("hbase.zookeeper.property.clientPort", "2181"); }
public static boolean isTableExist(String tableName) throws MasterNotRunningException, ZooKeeperConnectionException, IOException{ //在HBase中管理、訪問表須要先建立HBaseAdmin對象 //Connection connection = ConnectionFactory.createConnection(conf); //HBaseAdmin admin = (HBaseAdmin) connection.getAdmin(); HBaseAdmin admin = new HBaseAdmin(conf); return admin.tableExists(tableName); }
public static void createTable(String tableName, String... columnFamily) throws MasterNotRunningException, ZooKeeperConnectionException, IOException{ HBaseAdmin admin = new HBaseAdmin(conf); //判斷表是否存在 if(isTableExist(tableName)){ System.out.println("表" + tableName + "已存在"); //System.exit(0); }else{ //建立表屬性對象,表名須要轉字節 HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(tableName)); //建立多個列族 for(String cf : columnFamily){ descriptor.addFamily(new HColumnDescriptor(cf)); } //根據對錶的配置,建立表 admin.createTable(descriptor); System.out.println("表" + tableName + "建立成功!"); } }
public static void dropTable(String tableName) throws MasterNotRunningException, ZooKeeperConnectionException, IOException{ HBaseAdmin admin = new HBaseAdmin(conf); if(isTableExist(tableName)){ admin.disableTable(tableName); admin.deleteTable(tableName); System.out.println("表" + tableName + "刪除成功!"); }else{ System.out.println("表" + tableName + "不存在!"); }
public static void addRowData(String tableName, String rowKey, String columnFamily, String column, String value) throws IOException{ //建立HTable對象 HTable hTable = new HTable(conf, tableName); //向表中插入數據 Put put = new Put(Bytes.toBytes(rowKey)); //向Put對象中組裝數據 put.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column), Bytes.toBytes(value)); hTable.put(put); hTable.close(); System.out.println("插入數據成功"); }
public static void deleteMultiRow(String tableName, String... rows) throws IOException{ HTable hTable = new HTable(conf, tableName); List<Delete> deleteList = new ArrayList<Delete>(); for(String row : rows){ Delete delete = new Delete(Bytes.toBytes(row)); deleteList.add(delete); } hTable.delete(deleteList); hTable.close(); }
public static void deleteMultiRow(String tableName, String... rows) throws IOException{ HTable hTable = new HTable(conf, tableName); List<Delete> deleteList = new ArrayList<Delete>(); for(String row : rows){ Delete delete = new Delete(Bytes.toBytes(row)); deleteList.add(delete); } hTable.delete(deleteList); hTable.close(); }
public static void getAllRows(String tableName) throws IOException{ HTable hTable = new HTable(conf, tableName); //獲得用於掃描region的對象 Scan scan = new Scan(); //使用HTable獲得resultcanner實現類的對象 ResultScanner resultScanner = hTable.getScanner(scan); for(Result result : resultScanner){ Cell[] cells = result.rawCells(); for(Cell cell : cells){ //獲得rowkey System.out.println("行鍵:" + Bytes.toString(CellUtil.cloneRow(cell))); //獲得列族 System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell))); System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell))); System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell))); } } }
public static void getRow(String tableName, String rowKey) throws IOException{ HTable table = new HTable(conf, tableName); Get get = new Get(Bytes.toBytes(rowKey)); //get.setMaxVersions();顯示全部版本 //get.setTimeStamp();顯示指定時間戳的版本 Result result = table.get(get); for(Cell cell : result.rawCells()){ System.out.println("行鍵:" + Bytes.toString(result.getRow())); System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell))); System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell))); System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell))); System.out.println("時間戳:" + cell.getTimestamp()); } }
public static void getRowQualifier(String tableName, String rowKey, String family, String qualifier) throws IOException{ HTable table = new HTable(conf, tableName); Get get = new Get(Bytes.toBytes(rowKey)); get.addColumn(Bytes.toBytes(family), Bytes.toBytes(qualifier)); Result result = table.get(get); for(Cell cell : result.rawCells()){ System.out.println("行鍵:" + Bytes.toString(result.getRow())); System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell))); System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell))); System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell))); } }
經過HBase的相關JavaAPI,咱們能夠實現伴隨HBase操做的MapReduce過程,好比使用MapReduce將數據從本地文件系統導入到HBase的表中,好比咱們從HBase中讀取一些原始數據後使用MapReduce作數據分析。apache
1.查看HBase的MapReduce任務的執行數組
$ bin/hbase mapredcp
2.環境變量的導入app
(1)執行環境變量的導入(臨時生效,在命令行執行下述操做)maven
$ export HBASE_HOME=/opt/module/hbase-1.3.1 $ export HADOOP_HOME=/opt/module/hadoop-2.7.2 $ export HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp`
(2)永久生效:在/etc/profile配置ide
export HBASE_HOME=/opt/module/hbase-1.3.1 export HADOOP_HOME=/opt/module/hadoop-2.7.2
並在hadoop-env.sh中配置:(注意:在for循環以後配)函數
並在hadoop-env.sh中配置:(注意:在for循環以後配) export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/opt/module/hbase/lib/*
3.運行官方的MapReduce任務oop
-- 案例一:統計Student表中有多少行數據ui
$ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar rowcounter student
-- 案例二:使用MapReduce將本地數據導入到HBasethis
1)在本地建立一個tsv格式的文件:fruit.tsv
1001 Apple Red 1002 Pear Yellow 1003 Pineapple Yellow
2)建立HBase表
hbase(main):001:0> create 'fruit','info'
3)在HDFS中建立input_fruit文件夾並上傳fruit.tsv文件
$ /opt/module/hadoop-2.7.2/bin/hdfs dfs -mkdir /input_fruit/
$ /opt/module/hadoop-2.7.2/bin/hdfs dfs -put fruit.tsv /input_fruit/
4)執行MapReduce到HBase的fruit表中
$ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar importtsv \ -Dimporttsv.columns=HBASE_ROW_KEY,info:name,info:color fruit \ hdfs://hadoop102:9000/input_fruit
5)使用scan命令查看導入後的結果
hbase(main):001:0> scan ‘fruit’
目標:將fruit表中的一部分數據,經過MR遷入到fruit_mr表中。
分步實現:
1.構建ReadFruitMapper類,用於讀取fruit表中的數據
import java.io.IOException; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.CellUtil; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.util.Bytes; public class ReadFruitMapper extends TableMapper<ImmutableBytesWritable, Put> { @Override protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException { //將fruit的name和color提取出來,至關於將每一行數據讀取出來放入到Put對象中。 Put put = new Put(key.get()); //遍歷添加column行 for(Cell cell: value.rawCells()){ //添加/克隆列族:info if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){ //添加/克隆列:name if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){ //將該列cell加入到put對象中 put.add(cell); //添加/克隆列:color }else if("color".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){ //向該列cell加入到put對象中 put.add(cell); } } } //將從fruit讀取到的每行數據寫入到context中做爲map的輸出 context.write(key, put); } }
2. 構建WriteFruitMRReducer類,用於將讀取到的fruit表中的數據寫入到fruit_mr表中
import java.io.IOException; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.io.NullWritable; public class WriteFruitMRReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> { @Override protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException { //讀出來的每一行數據寫入到fruit_mr表中 for(Put put: values){ context.write(NullWritable.get(), put); } } }
3.構建Fruit2FruitMRRunner extends Configured implements Tool用於組裝運行Job任務
//組裝Job public int run(String[] args) throws Exception { //獲得Configuration Configuration conf = this.getConf(); //建立Job任務 Job job = Job.getInstance(conf, this.getClass().getSimpleName()); job.setJarByClass(Fruit2FruitMRRunner.class); //配置Job Scan scan = new Scan(); scan.setCacheBlocks(false); scan.setCaching(500); //設置Mapper,注意導入的是mapreduce包下的,不是mapred包下的,後者是老版本 TableMapReduceUtil.initTableMapperJob( "fruit", //數據源的表名 scan, //scan掃描控制器 ReadFruitMapper.class,//設置Mapper類 ImmutableBytesWritable.class,//設置Mapper輸出key類型 Put.class,//設置Mapper輸出value值類型 job//設置給哪一個JOB ); //設置Reducer TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRReducer.class, job); //設置Reduce數量,最少1個 job.setNumReduceTasks(1); boolean isSuccess = job.waitForCompletion(true); if(!isSuccess){ throw new IOException("Job running with error"); } return isSuccess ? 0 : 1; }
4.主函數中調用運行該Job任務
public static void main( String[] args ) throws Exception{ Configuration conf = HBaseConfiguration.create(); int status = ToolRunner.run(conf, new Fruit2FruitMRRunner(), args); System.exit(status); }
5.打包運行任務
$ /opt/module/hadoop-2.7.2/bin/yarn jar ~/softwares/jars/hbase-0.0.1-SNAPSHOT.jar
com.z.hbase.mr1.Fruit2FruitMRRunner
提示:運行任務前,若是待數據導入的表不存在,則須要提早建立。
提示:maven打包命令:-P local clean package或-P dev clean package install(將第三方jar包一同打包,須要插件:maven-shade-plugin)
目標:實現將HDFS中的數據寫入到HBase表中。
分步實現:
1.構建ReadFruitFromHDFSMapper於讀取HDFS中的文件數據
import java.io.IOException; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class ReadFruitFromHDFSMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //從HDFS中讀取的數據 String lineValue = value.toString(); //讀取出來的每行數據使用\t進行分割,存於String數組 String[] values = lineValue.split("\t"); //根據數據中值的含義取值 String rowKey = values[0]; String name = values[1]; String color = values[2]; //初始化rowKey ImmutableBytesWritable rowKeyWritable = new ImmutableBytesWritable(Bytes.toBytes(rowKey)); //初始化put對象 Put put = new Put(Bytes.toBytes(rowKey)); //參數分別:列族、列、值 put.add(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes(name)); put.add(Bytes.toBytes("info"), Bytes.toBytes("color"), Bytes.toBytes(color)); context.write(rowKeyWritable, put); } }
2.構建WriteFruitMRFromTxtReducer類
import java.io.IOException; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.io.NullWritable; public class WriteFruitMRFromTxtReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> { @Override protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException { //讀出來的每一行數據寫入到fruit_hdfs表中 for(Put put: values){ context.write(NullWritable.get(), put); } } }
3.建立Txt2FruitRunner組裝Job
public int run(String[] args) throws Exception { //獲得Configuration Configuration conf = this.getConf(); //建立Job任務 Job job = Job.getInstance(conf, this.getClass().getSimpleName()); job.setJarByClass(Txt2FruitRunner.class); Path inPath = new Path("hdfs://hadoop102:9000/input_fruit/fruit.tsv"); FileInputFormat.addInputPath(job, inPath); //設置Mapper job.setMapperClass(ReadFruitFromHDFSMapper.class); job.setMapOutputKeyClass(ImmutableBytesWritable.class); job.setMapOutputValueClass(Put.class); //設置Reducer TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRFromTxtReducer.class, job); //設置Reduce數量,最少1個 job.setNumReduceTasks(1); boolean isSuccess = job.waitForCompletion(true); if(!isSuccess){ throw new IOException("Job running with error"); } return isSuccess ? 0 : 1; }
4.調用執行Job
public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); int status = ToolRunner.run(conf, new Txt2FruitRunner(), args); System.exit(status); }
5.打包運行
$ /opt/module/hadoop-2.7.2/bin/yarn jar hbase-0.0.1-SNAPSHOT.jar com.atguigu.hbase.mr2.Txt2FruitRunner
提示:運行任務前,若是待數據導入的表不存在,則須要提早建立之。
提示:maven打包命令:-P local clean package或-P dev clean package install(將第三方jar包一同打包,須要插件:maven-shade-plugin)