word '\xe8\xb6\x85\xe8\x87\xaa\xe7\x84\xb6\xe7\x8e\xb0\xe8\xb1\xa1' not in vocabularyhtml
分詞後的樣本格式:
英雄聯盟,疾風劍豪-亞索,五殺,精彩操做
長安外傳,街頭採訪,神回覆
日本料理,蛋包飯
滑板運動,極限達人,城會玩python
LineSentencegit
u'王者榮耀'
print(model[u'王者榮耀'])
print(model[u'超天然現象'])github
python保存numpy數據
numpy.savetxt("result.txt", numpy_data)json
python保存list數據
file=open('data.txt','w')
file.write(str(list_data))
file.close()python2.7
寫list到txt文件
ipTable = ['158.59.194.213', '18.9.14.13', '58.59.14.21']
fileObject = open('sampleList.txt', 'w')
for ip in ipTable:
fileObject.write(ip)
fileObject.write('\n')
fileObject.close()ui
寫dict對象到json文件將dict轉爲字符串後寫入json文件
import json
dictObj = {
'andy':{
'age': 23,
'city': 'shanghai',
'skill': 'python'
},
'william': {
'age': 33,
'city': 'hangzhou',
'skill': 'js'
}
}
jsObj = json.dumps(dictObj)
fileObject = open('jsonFile.json', 'w')
fileObject.write(jsObj)
fileObject.close()spa
The first parameter passed to gensim.models.Word2Vec is an iterable of sentences.
Sentences themselves are a list of words.orm
gensim.models.word2vec.LineSentence
Simple format: one sentence = one line; words already preprocessed and separated by whitespace.htm
優質參考
http://wetest.qq.com/lab/view/30.html
http://lxbwk.njournal.sdu.edu.cn/fileup/HTML/2017-7-66.htm
http://jacoxu.com/%E7%A8%80%E7%96%8F%E7%9A%84%E7%9F%AD%E6%96%87%E6%9C%AC/
http://www.jianshu.com/p/d34d61188ab5
https://radimrehurek.com/gensim/models/doc2vec.html
https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
https://github.com/RaRe-Technologies/gensim/blob/b0f80a6ff3b4e58c55b6162b3b621af71225761a/docs/notebooks/doc2vec-IMDB.ipynb
https://stackoverflow.com/questions/31321209/doc2vec-how-to-get-document-vectors
>>> from gensim.models.doc2vec import TaggedDocument
能夠
下面不能夠
>>> import gensim.models.doc2vec.TaggedDocument
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named TaggedDocument
>>> from gensim.models.doc2vec import Doc2Vec,LabeledSentence
>>> import gensim.models.doc2vec.Doc2Vec
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named Doc2Vec
>>> from gensim.models.doc2vec import Doc2Vec
>>>
LabeledSentence的輸入文件格式:每一行爲:<labels, words>, 其中labels 能夠有多個,用tab 鍵分隔,words 用空格鍵分隔,eg:<id category I like my cat demon>.
輸出爲詞典vocabuary 中每一個詞的向量表示,這樣就能夠將商品labels:id,類別的向量拼接用做商品的向量表示。
參考http://www.360doc.com/content/17/0814/15/17572791_679139034.shtml
>>> from gensim.models.doc2vec import LabeledSentence
>>> documents = LabeledSentence(words=[u'some', u'words', u'here'], labels=[u'SENT_1'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: __new__() got an unexpected keyword argument 'labels'
>>> documents = LabeledSentence(words=[u'some', u'words', u'here'], tags=[u'SENT_1'])
>>> print(documents)
LabeledSentence([u'some', u'words', u'here'], [u'SENT_1'])
>>> from gensim.models.doc2vec import Doc2Vec
>>> model =Doc2Vec(documents, size = 100, window = 5, min_count = 1, workers=4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib64/python2.7/site-packages/gensim/models/doc2vec.py", line 641, in __init__
self.build_vocab(documents, trim_rule=trim_rule)
File "/usr/lib64/python2.7/site-packages/gensim/models/word2vec.py", line 577, in build_vocab
self.scan_vocab(sentences, progress_per=progress_per, trim_rule=trim_rule) # initial survey
File "/usr/lib64/python2.7/site-packages/gensim/models/doc2vec.py", line 680, in scan_vocab
if isinstance(document.words, string_types):
AttributeError: 'list' object has no attribute 'words'
Input to gensim.models.doc2vec should be an iterator over the LabeledSentence (say a list object). Try:
>>> model =Doc2Vec([documents], size = 100, window = 5, min_count = 1, workers=4)
>>> print model
Doc2Vec(dm/m,d100,n5,w5,s0.001,t4)
>>>
https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
>>> print(model.infer_vector([u'some',u'here']))[ 3.02350195e-03 -2.47021206e-03 -4.23655838e-05 1.06619455e-05 -2.07307865e-03 1.52201334e-03 -2.68392172e-03 4.86029405e-03 -3.07570468e-03 -1.27961146e-04 3.59600926e-05 5.56750805e-04 -1.86618324e-03 -2.78112385e-03 -3.24939704e-03 -4.69824160e-03 -1.94230478e-03 3.41035030e-03 -1.96390250e-03 -3.12410085e-03 2.32424913e-03 4.13724314e-03 -3.76667455e-03 4.44490695e-03 4.86690132e-03 -1.01872580e-03 -4.15571406e-03 4.93804645e-03 2.08313856e-03 -2.49790330e-03 2.88306503e-03 -2.11228104e-03 -7.48132443e-05 -2.86692451e-03 1.31704379e-03 -3.49374721e-03 2.85517215e-03 1.55686424e-03 2.88037118e-03 2.10905354e-03 -8.35062645e-04 1.03656796e-03 3.66695994e-03 3.16017168e-03 3.91360372e-03 1.89097866e-03 -4.97946097e-03 -1.25238323e-03 -1.44126080e-03 3.26181017e-03 -6.02229848e-05 2.08685431e-03 4.63444972e-03 2.12231209e-03 2.76103779e-03 -4.06579726e-04 6.27412752e-04 3.08081333e-04 -3.25262197e-03 -4.00892925e-03 3.97314038e-03 4.02647816e-03 1.02536182e-03 2.09628342e-04 1.93663652e-03 -2.59007933e-03 2.82125012e-03 -4.11406020e-03 8.89573072e-04 -2.25311797e-03 -2.08429853e-03 1.73660505e-04 2.08250736e-03 1.53203832e-03 7.52889435e-04 -1.24395418e-03 -3.14715598e-03 -4.88714431e-04 -3.19321570e-03 -1.17522234e-03 3.58190737e-03 3.01620923e-03 -3.71830584e-03 -2.14487920e-03 3.48089077e-03 1.65970484e-03 3.03952186e-03 1.13033829e-03 2.58382503e-03 -4.09777975e-03 -8.57007224e-04 -2.81002838e-03 -1.20109224e-04 3.29560786e-03 4.00114199e-03 -1.00307877e-03 -3.04128020e-03 -3.20556248e-03 -3.60509683e-03 -3.22059076e-03]