Java Collection筆記之ArrayList

1、前言

ArrayList 是一個數組隊列,相當於動態數組。與Java中的數組相比,它的容量能動態增長。它繼承於AbstractList,實現了List, RandomAccess, Cloneable, java.io.Serializable這些接口。

這裏寫圖片描述

  • ArrayList 繼承了AbstractList,實現了List。它是一個數組隊列,提供了相關的添加、刪除、修改、遍歷等功能。

  • ArrayList實現了RandmoAccess接口,即提供了隨機訪問功能。RandmoAccess是java中用來被List實現,爲List提供快速訪問功能的。在ArrayList中,我們即可以通過元素的序號快速獲取元素對象;這就是快速隨機訪問。

  • ArrayList 實現了Cloneable接口,即覆蓋了函數clone(),能被克隆。

  • ArrayList 實現java.io.Serializable接口,這意味着ArrayList支持序列化,能通過序列化去傳輸。

簡單地來說,ArrayList是對數組進行快速操作的一系列API。

ArrayList中的操作不是線程安全的。所以,建議在單線程中才使用ArrayList,而在多線程中可以選擇Vector或者CopyOnWriteArrayList。

2、簡單使用

ArrayList<Integer> list = new ArrayList<Integer>(); 
for(int i=0;i< 10; i++ ){
    //給數組增加10個Int元素
    list.add(i);
}
System.out.println("數組是否包含3:"+list.contains(3));
System.out.println("數組元素的數量:"+list.size());
System.out.println("數組的第三個元素:"+list.get(3));
//移除第三個元素
list.remove(3);
System.out.println("數組是否包含23:"+list.contains(3));
System.out.println("數組元素的數量:"+list.size());
System.out.println("數組的第三個元素:"+list.get(3));

list.clear();

System.out.println("數組元素的數量:"+list.size());

結果:

數組是否包含3true
數組元素的數量:10
數組的第三個元素:3
數組是否包含23false
數組元素的數量:9
數組的第三個元素:4
數組元素的數量:0

3、源碼簡單分析

3.1 構造方法

ArrayList的構造方法有3個。

前面說到ArrayList是對數組進行快速操作的一系列API。而ArrayList的構造方法就是對這個默認數組elementData的初始化。

  • 默認的構造方法,併爲內置的elementData初始化一個DEFAULTCAPACITY_EMPTY_ELEMENTDATA的空數組。
/** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /** * Constructs an empty list with an initial capacity of ten. */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }
  • 第二個構造方法是通過定義長度,爲內置的elementData初始化,長度爲initialCapacity,長度不能爲負數。
/** * Constructs an empty list with the specified initial capacity. * * @param initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }
  • 根據另外一個數據集合,爲內置的elementData初始化,把集合中的數據拷貝到elementData中。
/** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        if ((size = elementData.length) != 0) {
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // replace with empty array.
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

3.2 增加元素

爲數據增加元素的方法有四個:

  • 將指定的元素添加到此列表的尾部。
/** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return <tt>true</tt> (as specified by {@link Collection#add}) */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

代碼比較簡單,就是先調用ensureCapacityInternal,通過Arrays類的copyOf方法把舊數組拷貝到一個長度比舊數組大1的新數組中去(其實我們看來就是舊數組的長度加1,但我們都知道數組不是變長的,所有隻能使用拷貝創建新數組的方式來實現變長的功能),然後再把新的元素添加到數組最後一個位置。
當然,我們看到grow方法中,可能不是把數組的容量增大。舊數組的長度和新數組的長度是一樣的,數組本身尾部的一些位置都是空閒的,因爲ArrayList作了移除元素的操作。

private void ensureCapacityInternal(int minCapacity) {
      if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
          minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
      }

      ensureExplicitCapacity(minCapacity);
  }

  private void ensureExplicitCapacity(int minCapacity) {
      modCount++;

      // overflow-conscious code
      if (minCapacity - elementData.length > 0)
          grow(minCapacity);
  }

  /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */
  private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

  /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */
  private void grow(int minCapacity) {
      // overflow-conscious code
      int oldCapacity = elementData.length;
      int newCapacity = oldCapacity + (oldCapacity >> 1);
      if (newCapacity - minCapacity < 0)
          newCapacity = minCapacity;
      if (newCapacity - MAX_ARRAY_SIZE > 0)
          newCapacity = hugeCapacity(minCapacity);
      // minCapacity is usually close to size, so this is a win:
      elementData = Arrays.copyOf(elementData, newCapacity);
  }
  • 將指定的元素插入此列表中的指定位置。
/** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */
    public void add(int index, E element) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }

首先判斷index位置的合法性:

private void rangeCheckForAdd(int index) {
    if (index < 0 || index > this.size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

然後和前一個方法一樣,在ensureCapacityInternal方法裏面,使用數組的長度加1。
這裏再通過System.arraycopy對數組再一次進行拷貝。與Arrays.copyOf不同的是,System.arraycopy只是把index位置及其後面的元素,拷貝到數組的index+1及其後面的位置中,也就是把index及其後面的元素全部後移一位。
最後,把新的元素放到數組的index位置。

public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)

參數
src -- 這是源數組.
srcPos -- 這是源數組中的起始位置。
dest -- 這是目標數組。
destPos -- 這是目標數據中的起始位置。
length -- 這是一個要複製的數組元素的數目。
  • 按照指定集合的迭代器所返回的元素順序,將該集合中的所有元素添加到此列表的尾部。
/**
     * Appends all of the elements in the specified collection to the end of
     * this list, in the order that they are returned by the
     * specified collection's Iterator.  The behavior of this operation is
     * undefined if the specified collection is modified while the operation
     * is in progress.  (This implies that the behavior of this call is
     * undefined if the specified collection is this list, and this
     * list is nonempty.)
     *
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

理解了前面兩個方法後,這個方法就比較容易了。先獲取增加進來的集合的數量numNew,使用數組的長度加numNew ,再通過System.arraycopy把集合中所以的元素增加到數組後面的位置中。

  • 從指定的位置開始,將指定集合中的所有元素插入到此列表中。
/** * Inserts all of the elements in the specified collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified collection's iterator. * * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

和前面那些方法基本原理是一樣的,只是過程中需要判斷插入的位置,如果插入的位置剛好在原數組的尾部,那我們直接添加到後面就好。如果不在尾部,那就把原數組index位置及後面的元素,通過System.arraycopy,往後移numNew位,再把集合中的元素添加到index及後面的位置即可。

注意:所有增加元素的方法中,都會使ArrayList的size屬性發生變化。

3.3 替換元素

用指定的元素替代此列表中指定位置上的元素。

/** * Replaces the element at the specified position in this list with * the specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

很簡單,先通過rangeCheck判斷index這個位置是否是合法的。然後把新的元素放到index位置,返回舊元素。

private void rangeCheck(int index) {
        if (index < 0 || index >= this.size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

3.4 移除元素

移除元素的方法有6個:

  • 移除此列表中指定位置上的元素。
/** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */
    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

在判斷index的合法性後,判斷index的位置,如果index是最後一個元素,直接把此位置的元素位置設置爲空。如果不是,則把這個元素之後的元素都往前移一位,然後把最後一個位置設置爲空。

  • 移除此列表中首次出現的指定元素(如果存在)。
/**
     * Removes the first occurrence of the specified element from this list,
     * if it is present.  If the list does not contain the element, it is
     * unchanged.  More formally, removes the element with the lowest index
     * <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
     * (if such an element exists).  Returns <tt>true</tt> if this list
     * contained the specified element (or equivalently, if this list
     * changed as a result of the call).
     *
     * @param o element to be removed from this list, if present
     * @return <tt>true</tt> if this list contained the specified element
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
 return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
 return true;
                }
        }
 return false;
    }

    /*
     * Private remove method that skips bounds checking and does not
     * return the value removed.
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

在這個移除方法中,最要是爲了找出要移除元素出現的第一個位置(假如存在)。然後再使用fastRemove將這個位置的元素移除掉。
這裏的fastRemove(int index)方法與前面的remove(int index)基本相同,只是少了檢查index的合法性及返回值而已。

  • 移除列表中索引在 fromIndex(包括)和 toIndex(不包括)之間的所有元素。
/**
     * Removes from this list all of the elements whose index is between
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
     * Shifts any succeeding elements to the left (reduces their index).
     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
     * (If {@code toIndex==fromIndex}, this operation has no effect.)
     *
     * @throws IndexOutOfBoundsException if {@code fromIndex} or
     *         {@code toIndex} is out of range
     *         ({@code fromIndex < 0 ||
     *          fromIndex >= size() ||
     *          toIndex > size() ||
     *          toIndex < fromIndex})
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }

這裏很簡單,把toIndex位置及其後的元素,移到fromIndex及其後面的位置上,再後面的位置全部清空。

  • 移除此列表中包含着指定集合裏的元素(如果存在)
/**
     * Removes from this list all of its elements that are contained in the
     * specified collection.
     *
     * @param c collection containing elements to be removed from this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
 return batchRemove(c, false);
    }
  • 移除此列表中除指定集合裏的元素之外的元素
/**
     * Retains only the elements in this list that are contained in the
     * specified collection.  In other words, removes from this list all
     * of its elements that are not contained in the specified collection.
     *
     * @param c collection containing elements to be retained in this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
 return batchRemove(c, true);
    }

上面兩個方法都很簡單,都是先判斷集合參數是否爲空,然後調用batchRemove來作數據的移除。
batchRemove方法的complement參數用於判斷是保留集合元素或刪除集合元素。

private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            }
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }
  • 移除此列表中的所有元素。
/** * Removes all of the elements from this list. The list will * be empty after this call returns. */
    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

這方法就更簡單了,就是把數組所有位置都設置爲空。

注意:所有移除元素的方法中,都會使ArrayList的size屬性發生變化。

3.5 獲取元素

獲取ArrayList元素的方法也有兩種:

  • 返回此列表中指定位置上的元素。
// Positional Access Operations

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    /** * Returns the element at the specified position in this list. * * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */
    public E get(int index) {
        rangeCheck(index);

        return elementData(index);
    }

檢查完index的合法性後,直接根據index座標返回內置數組位置的元素。

  • 通過Iterator接口實現來獲取元素。

這種方式常用於列表元素的遍歷。

/** * Returns an iterator over the elements in this list in proper sequence. * * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @return an iterator over the elements in this list in proper sequence */
    public Iterator<E> iterator() {
        return new Itr();
    }

iterator方法會創建一個Iterator接口實現對象。
ArrrayList內置的Iterator接口實現(如下),是通過遊標cursor的方式來確定列表的訪問的當前位置,然後通過cursor作爲數組下標來獲取或者移除列表元素。

/** * An optimized version of AbstractList.Itr */
private class Itr implements Iterator<E> {
    int cursor;       // index of next element to return
    int lastRet = -1; // index of last element returned; -1 if no such
    int expectedModCount = modCount;

    public boolean hasNext() {
        return cursor != size;
    }

    @SuppressWarnings("unchecked")
    public E next() {
        checkForComodification();
        int i = cursor;
        if (i >= size)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i + 1;
        return (E) elementData[lastRet = i];
    }

    public void remove() {
        if (lastRet < 0)
            throw new IllegalStateException();
        checkForComodification();

        try {
            ArrayList.this.remove(lastRet);
            cursor = lastRet;
            lastRet = -1;
            expectedModCount = modCount;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }

    @Override
    @SuppressWarnings("unchecked")
    public void forEachRemaining(Consumer<? super E> consumer) {
        Objects.requireNonNull(consumer);
        final int size = ArrayList.this.size;
        int i = cursor;
        if (i >= size) {
            return;
        }
        final Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length) {
            throw new ConcurrentModificationException();
        }
        while (i != size && modCount == expectedModCount) {
            consumer.accept((E) elementData[i++]);
        }
        // update once at end of iteration to reduce heap write traffic
        cursor = i;
        lastRet = i - 1;
        checkForComodification();
    }

    final void checkForComodification() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
    }
}

/** * An optimized version of AbstractList.ListItr */
private class ListItr extends Itr implements ListIterator<E> {
    ListItr(int index) {
        super();
        cursor = index;
    }

    public boolean hasPrevious() {
        return cursor != 0;
    }

    public int nextIndex() {
        return cursor;
    }

    public int previousIndex() {
        return cursor - 1;
    }

    @SuppressWarnings("unchecked")
    public E previous() {
        checkForComodification();
        int i = cursor - 1;
        if (i < 0)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i;
        return (E) elementData[lastRet = i];
    }

    public void set(E e) {
        if (lastRet < 0)
            throw new IllegalStateException();
        checkForComodification();

        try {
            ArrayList.this.set(lastRet, e);
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }

    public void add(E e) {
        checkForComodification();

        try {
            int i = cursor;
            ArrayList.this.add(i, e);
            cursor = i + 1;
            lastRet = -1;
            expectedModCount = modCount;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }
}

3.6 其它方法

  • 返回此列表中首次出現的指定元素的索引
/**
     * Returns the index of the first occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the lowest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
 return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
 return i;
        }
 return -1;
    }

如果沒有提定元素則返回-1。

  • 如果此列表中包含指定的元素
/**
     * Returns <tt>true</tt> if this list contains the specified element.
     * More formally, returns <tt>true</tt> if and only if this list contains
     * at least one element <tt>e</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
     *
     * @param o element whose presence in this list is to be tested
     * @return <tt>true</tt> if this list contains the specified element
     */
    public boolean contains(Object o) {
 return indexOf(o) >= 0;
    }

如果找得到此列表中首次出現的指定元素的索引,說明是包含指定元素。

  • 返回此列表中的元素數。
/** * Returns the number of elements in this list. * * @return the number of elements in this list */
    public int size() {
        return size;
    }

我們在前面增加和移除列表元素的時候都會使用size發生變化。ArrayList是通過size來記錄元素的個數的。
爲什麼我們不是返回內置數組elementData的長度呢?很明顯,ArrayList做移除操作的時候,只是把最後位置設置爲空,則不是把長度減短。

  • 列表中是否有元素
/** * Returns <tt>true</tt> if this list contains no elements. * * @return <tt>true</tt> if this list contains no elements */
    public boolean isEmpty() {
        return size == 0;
    }

3.7 關於RandomAccess接口

List 實現所使用的標記接口,用來表明其支持快速(通常是固定時間)隨機訪問。此接口的主要目的是允許一般的算法更改其行爲,從而在將其應用到隨機或連續訪問列表時能提供良好的性能。

將操作隨機訪問列表的最佳算法(如 ArrayList)應用到連續訪問列表(如 LinkedList)時,可產生二次項的行爲。如果將某個算法應用到連續訪問列表,那麼在應用可能提供較差性能的算法前,鼓勵使用一般的列表算法檢查給定列表是否爲此接口的一個 instanceof,如果需要保證可接受的性能,還可以更改其行爲。

現在已經認識到,隨機和連續訪問之間的區別通常是模糊的。例如,如果列表很大時,某些 List 實現提供漸進的線性訪問時間,但實際上是固定的訪問時間。這樣的 List 實現通常應該實現此接口。實際經驗證明,如果是下列情況,則 List 實現應該實現此接口,即對於典型的類實例而言,此循環:

for (int i=0, n=list.size(); i < n; i++)
         list.get(i);

的運行速度要快於以下循環:

for (Iterator i=list.iterator(); i.hasNext(); )
         i.next();

如通過Collection.shuffle()隨機打亂一個順序數組,JDK判斷如果集合屬於RandomAccess,則通過簡單的for循環遍歷數組,而不屬於RandomAccess的話,則使用ListIterator來遍歷。

/** * Randomly permute the specified list using the specified source of * randomness. All permutations occur with equal likelihood * assuming that the source of randomness is fair.<p> * * This implementation traverses the list backwards, from the last element * up to the second, repeatedly swapping a randomly selected element into * the "current position". Elements are randomly selected from the * portion of the list that runs from the first element to the current * position, inclusive.<p> * * This method runs in linear time. If the specified list does not * implement the {@link RandomAccess} interface and is large, this * implementation dumps the specified list into an array before shuffling * it, and dumps the shuffled array back into the list. This avoids the * quadratic behavior that would result from shuffling a "sequential * access" list in place. * * @param list the list to be shuffled. * @param rnd the source of randomness to use to shuffle the list. * @throws UnsupportedOperationException if the specified list or its * list-iterator does not support the <tt>set</tt> operation. */
    @SuppressWarnings({"rawtypes", "unchecked"})
    public static void shuffle(List<?> list, Random rnd) {
        int size = list.size();
        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
            for (int i=size; i>1; i--)
                swap(list, i-1, rnd.nextInt(i));
        } else {
            Object arr[] = list.toArray();

            // Shuffle array
            for (int i=size; i>1; i--)
                swap(arr, i-1, rnd.nextInt(i));

            // Dump array back into list
            // instead of using a raw type here, it's possible to capture
            // the wildcard but it will require a call to a supplementary
            // private method
            ListIterator it = list.listIterator();
            for (int i=0; i<arr.length; i++) {
                it.next();
                it.set(arr[i]);
            }
        }
    }

關於這個訪問速度的問題,可以參考:http://blog.csdn.net/keda8997110/article/details/8635005

4、說明

  1. Vector的整個實現與ArrayList基本相似,只是在對一些操作性的方法上加上了synchronized關鍵字,使之在線程上是安全的。
  2. 本文中源碼大部分來源於JDK1.8。