Pytorch_Part1_簡介&張量

VisualPytorch發佈域名+雙服務器以下:
http://nag.visualpytorch.top/static/ (對應114.115.148.27)
http://visualpytorch.top/static/ (對應39.97.209.22)html

1、Pytorch簡介與安裝

1. 簡介

PyTorch是在Torch基礎上用python語言從新打造的一款深度學習框架.增加速度與TensorFlow一致.java

ScreenClip

2. 優勢:

  • 上手快:掌握Numpy和基本深度學習概念便可上手
  • 代碼簡潔靈活:用nn.module封裝使網絡搭建更方便;基於動態圖機制,更靈活
  • Debug方便:調試PyTorch就像調試 Python 代碼同樣簡單
  • 文檔規範:https: //pytorch.org/docs/ 可查各版本文檔
  • 資源多:arXiv中的新算法大多有PyTorch實現
  • 開發者多:GitHub上貢獻者(Contributors) 已超過1100+
  • 背靠大樹:FaceBook維護開發

3. 安裝:

  • anaconda(需添加中科大鏡像)python

  • pycharm(將jetbrains-agent.jar 放 到安裝目錄\bin文件 夾,在 pycharm64.exe.vmoptions 中添加 命令 -javaagent:安裝目錄\jetbrains-agent.jar . 重啓選擇網頁激活)算法

  • pytorch(先安裝cuda10.0及對應CuDNN版本,經過nvcc -V驗證. 登錄https://download.pytorch.org/whl/torch_stable.html. 下載cu100/torch-1.2.0-cp37-cp37m-win_amd64.whl 及對應 torchvision 的whl文件,進入相應虛擬環境,先建立虛擬環境,再經過pip安裝)。最後經過下面指令驗證GPU版本Pytorch能夠運行:服務器

In [1]: import torch
 
In [2]: torch.cuda.current_device()
Out[2]: 0
 
In [3]: torch.cuda.device(0)
Out[3]: <torch.cuda.device at 0x7efce0b03be0>
 
In [4]: torch.cuda.device_count()
Out[4]: 1
 
In [5]: torch.cuda.get_device_name(0)
Out[5]: 'GeForce GTX 950M'

In [5]: torch.__version__
Out[5]: '1.2.0'

2、張量簡介與建立

1. Tensor屬性

0.4.0以前,Variable是torch.autograd中的數據類型,主要用於封裝Tensor,進行自動求導,包含:網絡

  • data : 被包裝的Tensor
  • grad: data的梯度
  • grad_fn : 建立Tensor的Function,是自動求導的關鍵
  • requires_ grad : 指示是否須要梯度
  • is_ leaf: 指示是不是葉子結點(張量)

以後的Tensor兼容了Variable的全部屬性,並添加了下面三個:框架

  • dtype : 張量的數據類型,如 torch .FloatTensor, torch.cuda.FloatTensor
  • shape : 張量的形狀,如( 64, 3, 224, 224 )
  • device : 張量所在設備,GPU /CPU,是加速的關鍵

在這裏插入圖片描述

2. 建立

A. 直接ide

torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False) # 是否鎖頁內存

torch.from_numpy(...) # 共享內存,參數同上

B. 依據數值函數

torch.zeros(*size, out=None, dtype=None, layout=torch.strided,device=None, requires_grad=False)
torch.zeros_like(input, dtype=None,layout=None,device=None, requires_grad=False)

torch.ones(...) # 參數同zeros
torch.ones_like(...) # 參數同zeros_like
# 如下函數參數從out起同zeros
torch.full(size, fill_value, ...) 
torch.arange(start=0, end, step=1, ...) # step表步長

torch.linspace(start, end, steps=100, ...) # steps表長度 (steps-1)*step=end-start
torch.logspace(start, end, steps=100, base=10.0,...)
torch.eye(n, m=None,..)	# 二維,n行m列

C. 依據機率分佈學習

torch.normal(mean, std, (size,) out=None) # mean, std 均爲標量時size表示輸出一維張量大小,不然沒有size,輸出的張量來自於不一樣分佈

torch.randn(*size, out=None, dtype=None, layout=torch.strided,device=None, requires_grad=False) # 標準正太分佈

torch.rand(...) # 均勻分佈,參數同randn
torch.randint(low=0, high,...) # 均勻整數分佈,參數從size同randn

torch.randperm(n,...) # 0到n-1隨機排列,參數從out同randn
torch.bernoulli(input, *, generator=None, out=None) # 以input爲機率,生成伯努力分佈

3、張量操做與線性迴歸

1. 張量操做

A. 拼接與切分

torch.cat(tensors, dim=0, out=None)
torch.stack(tensors, dim=0, out=None) # 在新維度上拼接

torch.chunk(input, chunks, dim=0)
torch.split(tensor, split_size_or_sections, dim=0)

B. 張量索引

torch.index_select(input, dim, index, out=None)
torch.masked_select(input, mask, out=None) # mask爲與input同形狀的bool

C. 張量變換

torch.reshape(input, shape)
torch.transpose(input, dim0, dim1) # 交換的兩維
torch.t(input)

torch.squeeze(input, dim=None, out=None) # 默認去除全部長度1的維,不然去除指定且長度爲1的維
torch.usqueeze(input, dim, out=None)

2. 數學運算

在這裏插入圖片描述
在這裏插入圖片描述

3. 線性迴歸

結果:
在這裏插入圖片描述

import torch
import matplotlib.pyplot as plt
torch.manual_seed(10)

lr = 0.05  # 學習率    20191015修改

# 建立訓練數據
x = torch.rand(20, 1) * 10  # x data (tensor), shape=(20, 1)
y = 2*x + (5 + torch.randn(20, 1))  # y data (tensor), shape=(20, 1)

# 構建線性迴歸參數
w = torch.randn((1), requires_grad=True)
b = torch.zeros((1), requires_grad=True)

for iteration in range(1000):

    # 前向傳播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 計算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()

    # 反向傳播
    loss.backward()

    # 更新參數
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

    # 清零張量的梯度   20191015增長
    w.grad.zero_()
    b.grad.zero_()

    # 繪圖
    if iteration % 20 == 0:

        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), y_pred.data.numpy(), 'r-', lw=5)
        plt.text(2, 20, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
        plt.xlim(1.5, 10)
        plt.ylim(8, 28)
        plt.title("Iteration: {}\nw: {} b: {}".format(iteration, w.data.numpy(), b.data.numpy()))
        plt.pause(0.5)

        if loss.data.numpy() < 1:
            break

4、計算圖與動態圖機制

1. 計算圖

計算圖是用來描述運算的有向無環圖,有兩個主要元素:結點(Node,表示數據,如向量,矩陣,張量) 和邊(Edge,表示運算,如加減乘除卷積等)結

用計算圖表示:y = (x+ w) * (w+1) 以下

a = x + w 
b = w + 1 
y = a * b

在這裏插入圖片描述

能夠根據計算圖構建相應的張量並計算梯度:

  • 葉子張量:由用戶建立的張量,保存梯度,沒有梯度函數
  • 非葉子張量:經過計算獲得,反向傳播會釋放梯度。除非在反向傳播以前a.retain_grd()

例如x=2 w=1 時,經過計算圖得:

\(dw = \frac{\partial y}{\partial w} = \frac{\partial y}{\partial a} \frac{\partial a}{\partial w} + \frac{\partial y}{\partial b} \frac{\partial b}{\partial w} = b *1+a*1=w+1+x+w=5\)

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)     # retain_grad()
b = torch.add(w, 1)
y = torch.mul(a, b)

y.backward()	# 張量內部方法,調用了torch.autograd.backward()
print(w.grad)

tensor([5.])

# 查看葉子結點
print("is_leaf:\n", w.is_leaf, x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)

# 查看梯度
print("gradient:\n", w.grad, x.grad, a.grad, b.grad, y.grad)

# 查看 grad_fn
print("grad_fn:\n", w.grad_fn, x.grad_fn, a.grad_fn, b.grad_fn, y.grad_fn)

is_leaf:
True True False False False
gradient:
tensor([5.]) tensor([2.]) None None None
grad_fn:
None None <AddBackward0 object at 0x000001F6AABCB0F0> <AddBackward0 object at 0x000001F6C1A52048> <MulBackward0 object at 0x000001F6AACD7D68>

2. 動態圖——運算與搭建同時

動態圖vs靜態圖——自由行(靈活易調)vs跟團遊
在這裏插入圖片描述

5、autograd與邏輯迴歸

1. autograd自動求取梯度

torch.autograd.backward(tensors,grad_tensors=None,retain_graph=None,create_graph=False)	

torch.autograd.grad(outputs,inputs,grad_outputs=None,retain_graph=None,create_graph=False) # 求指定inputs的梯度

Parameter:

  • retain_graph 保存計算圖,可屢次

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)
    
    y.backward(retain_graph=True)
    # print(w.grad)
    y.backward()
  • grad_tensors 表示多梯度權重

    y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)
    y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2
    
    loss = torch.cat([y0, y1], dim=0)       # [y0, y1]
    
    loss.backward(gradient=torch.tensor([1., 2.]))    
    
    print(w.grad) # 1*5+2*2=9
  • create_graph 輸出爲張量的元組,表明一種求導運算:

    x = torch.tensor([3.], requires_grad=True)
    y = torch.pow(x, 2)     # y = x**2
    
    grad_1 = torch.autograd.grad(y, x, create_graph=True)   # grad_1 = dy/dx = 2x = 2 * 3 = 6
    print(grad_1)
    
    grad_2 = torch.autograd.grad(grad_1[0], x)              # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
    print(grad_2)

    (tensor([6.], grad_fn= ),)
    (tensor([2.]),)

Note:

  • 梯度不自動清零

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    for i in range(4):
        a = torch.add(w, x)
        b = torch.add(w, 1)
        y = torch.mul(a, b)
    
        y.backward()
        print(w.grad)

    若是沒有 w.grad.zero_() ,梯度將會累積

  • 依賴於葉子結點的結點,requires_grad默認爲True

    print(a.requires_grad, b.requires_grad, y.requires_grad)

    True True True

  • 葉子結點不可執行in-place

    a = torch.ones((1, ))
    a = a + torch.ones((1, ))	# a存儲位置改變,爲inplace操做
    a += torch.ones((1, ))
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)
    
    w.add_(1)
    
    y.backward()

    RuntimeError: a leaf Variable that requires grad has been used in an in-place operation.

2. 邏輯迴歸 = 對數概率迴歸

在這裏插入圖片描述
在這裏插入圖片描述

模型訓練步驟

在這裏插入圖片描述
結果:

在這裏插入圖片描述

代碼:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)

# ============================ step 1/5 生成數據 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 類別0 數據 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 類別0 標籤 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 類別1 數據 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 類別1 標籤 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# ============================ step 2/5 選擇模型 ============================
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()   # 實例化邏輯迴歸模型


# ============================ step 3/5 選擇損失函數 ============================
loss_fn = nn.BCELoss()

# ============================ step 4/5 選擇優化器   ============================
lr = 0.01  # 學習率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# ============================ step 5/5 模型訓練 ============================
for iteration in range(1000):

    # 前向傳播
    y_pred = lr_net(train_x)

    # 計算 loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # 反向傳播
    loss.backward()

    # 更新參數
    optimizer.step()

    # 清空梯度
    optimizer.zero_grad()

    # 繪圖
    if iteration % 20 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5爲閾值進行分類
        correct = (mask == train_y).sum()  # 計算正確預測的樣本個數
        acc = correct.item() / train_y.size(0)  # 計算分類準確率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break
相關文章
相關標籤/搜索