協方差和相關係數

本文摘自《概率論和數理統計》 陳希孺著 中國科學技術大學出版社

協方差和相關係數

現在我們來考慮多維隨機向量的數字特徵。以二維的情況爲例,設 (X,Y) 爲二維隨機向量。 X,Y 本身都是一維隨機變量,可以定義爲其均值、方差,在本文中我們記


E(X)=m1,E(Y)=m2,Var(X)=σ21,Var(Y)=σ22

協方差定義

我們稱 E[(Xm1)(Ym2)] X,Y 的協方差,並記爲 Cov(X,Y)
「協」即「協同」的意思。 X 的方差是 Xm1 Xm1 的乘積的期望,如今把一個 Xm1 換爲 Ym2 ,其形式接近方差,又有 X,Y 二者的參與,由此得出協方差的名稱。由定義看出, Cov(X,Y) X,Y 的次序無關,即 Cov(X,Y)=Cov(Y,X) 。可直接由定義得到協方差的一些簡單性質。例如,若 c1,c2,c3,c4 都是常數,則,


Cov(c1X+c2,c3Y+c4)=c1c3Cov(X,Y) 公式(1)

又易知:


Cov(X,Y)=E(XY)m1m2 公式(2)

這些簡單的證明就不在這裏證明了。

協方差的重要性質

定理1

  1. X,Y 獨立,則 Cov(X,Y)=0
  2. [Cov(X,Y)]2σ21σ22 。等號成立僅當 X,Y 之間有嚴格的線性關係(即存在常熟 a,b ,使得 Y=a+bX )時成立。

證明1

因爲當 X,Y 獨立的時候, E(XY)=m1m2 ,且 Cov(X,Y)=E(XY)m1m2 ,故 Cov(XY)=m1m2m1m2=0

證明2


預備小知識:

  • a,b,c 爲常數, a>0 ,而二次三項式 at2+2bt+c t 任何實值都非負,則必有 acb2 。(二次函數沒有實根 )
  • 如果隨機變量 Z 只能夠非負值,而 E(Z)=0 ,則 Z=0

證明小知識1:注意到若 ac<b2 ,則 at2+2bt+c=0 有兩個不同的實根 t1<t2 ,因而 at2+2bt+c=a(tt1)(tt2) 。取 t0 使 t1<t0<t2 ,則有 at20+2bt0+c=a(tt0)(t0t2)<0 ,與 at2+2bt+c 對任何 t 非負矛盾。這就證明了小知識的第一點。

證明小知識2:若 Z0 ,則因 Z 只能取非負值,它必以一定的大於0的概率取大於0的值,這將導致 E(Z)>0 ,與 E(Z)=0 的假定不符合。


現考慮:


E[t(Xm1)+(Ym2)]2=σ21t2+2Cov(X,Y)t+σ22 公式(3)

由於此等式左邊是一個非負隨機變量的均值,故它對任何 t 非負。按預備知識1,有


σ21σ22[Cov(X,Y)]2 公式(4)

進一步,如果公式(4)等號成立,則公式(3)右邊等於 (σ1t±σ2)2 ± 號視 Cov(X,Y)>0 <0 而定,爲確定符合,暫設 Cov(X,Y)>0 ,則公式(3)右邊爲 (σ1t+σ2)2 。此式在 t=t0=σ2/σ1 時爲0。以 t=t0 帶入公式(3),有:


E[t0(Xm1)+(Ym2)]2=0

再按預備知識2,即知 t0(Xm1)+(Ym2)=0 ,因而 X,Y 之間有嚴格線性關係。

反之,若 X,Y 之間有嚴格線性關係 Y=aX+b ,則


σ22=Var(Y)=Var(aX+b)=Var(aX)=a2Var(X)=a2σ21



m2=E(Y)=aE(X)+b=am1+b

因而有


Ym2=(aX+b)(am1+b)=a(Xm1)

於是


Cov(X,Y)=E[(Xm1)a(Xm1)]=a[E(Xm1)]=aσ21

因此,


[Cov(X,Y)]2=a2σ4=σ21(a2σ2)=σ21σ22

即公式(4)等號成立,這就證明了定理1中第2個知識點的全部結論。

相關係數定義

定義:我們把 Cov(X,Y)σ1σ2 稱爲 X,Y 的相關係數,並記爲 Corr(X,Y)
形式上可以把相關係數視爲「標準尺度下的協方差」。變量 X,Y 的協方差作爲 (Xm1)(Ym2) 的均值,依賴於 X,Y 的度量單位,選擇適當單位使 X,Y 的方差都爲1,這協方差就是相關係數。這樣就能更好地反應 X,Y 之間的關係,不受單位影響。

定理

  1. X,Y 獨立,則 Corr(X,Y)=0
  2. 1Corr(X,Y)1 ,或 Corr(X,Y)1 ,等號當且僅當 X Y 有嚴格的線性關係時能達到。

相關解釋:

第一條

Corr(X,Y)=0 ,(或 Cov(X,Y)=0 一樣)時,稱「 X,Y 不相關」。本定理1說明由 X,Y 的獨立性推出他們的不相關。但反過來一般不成立:由 Corr(X,Y)=0 不一定有 X,Y 獨立。下面是一個簡單的例子。


例子:

(X,Y) 服從單位圓內的均勻分佈,即其密度函數爲:


f(x,y)=π1 ,0 ,x2+y2<1x2+y21

由於 x,y 是對稱的,故他們擁有相同的概率密度函數。概率密度函數的求法請往下找,這裏爲了排版美觀將其內容放在下方。由於 X,Y 擁有相同的邊緣密度函數,所以我們只求一個就可以了:


g(x)=1x21x2f(x,y)dy=1x21x2π1dy={2π11x2 ,0 , x<1x1

這個函數關於0對稱,因此其均值爲0,故 E(X)=E(Y)=0 。而


Cov(X,Y)=E(XY)m1m2=E(XY)=1πxydxdyx2+y2<1   =0

Corr(X,Y)=0 。但 X,Y 不獨立,因爲聯合密度 f(x,y) 不等於其邊緣密度之積 g(x)g(y)


第二條

相關係數也常稱爲「線性相關係數」。這是因爲,實際上相關係數並不是刻畫了 X,Y 之間「一般」關係的程度,而只是「線性關係的程度。這種說法的根據之一就在於,當且僅當 X,Y 具有嚴格的線性關係時,纔有 Corr(X,Y) 達到最大值1.可以容易舉出例子說明:即使 X Y 有某種嚴格的函數關係但非線性關係, Corr(X,Y) 不僅不爲1,還可以爲0.


例子:

XR(12,12) ,即區間 [12,12] 內均勻分佈,而 Y=cosX Y X 有嚴格的函數關係。但因 E(X)=0 ,得到:


Cov(X,Y)=E(XY)m1m2=E(XY)=E(XcosX)=1/21/2xcosxdx=0

故, Corr(X,Y)=0 。雖然求出來的相關係數爲0,也就是所謂的「不相關」,它們之間確有着嚴格的關係 Y=cosX 。足見這樣的相關只能指線性而言,一超出了這個範圍,這個概念就失去了意義。


第三條

如果 0<Corr(X,Y)<1 ,則解釋爲: X,Y 之間有「一定程度的」線性關係而非嚴格的線性關係。何謂「一定程度」的線性關係?我們可以用下面的圖來說明一下。在這三幅圖中,我們都假定 (X,Y) 服從所畫區域A內的均勻分佈(即聯合概率密度 f(x,y) 在A內爲 A1 ,在A外爲0, A 爲區域A的面積)。在這三張圖中, X,Y 都沒有嚴格的線性關係,因爲由 X 的值不能決定 Y 的值。可是,由這幾個圖我們都能「感覺」出, X,Y 之間存在着一種線性的「趨勢」。這種趨勢,在圖(a)中已較顯著且是正向的( X 增加 Y 傾向於增加),這相應於 Corr(X,Y) 大比較顯著地大於0。在(b)中,這種線性趨勢比(a)更明顯,程度更大,反映 Corr(X,Y) 比(a)的情況更大,但爲負向的。至於(c),則多少有一點線性傾向,但已經很微弱,所以 Corr(X,Y) 雖然大於0,但是很接近0。

線性相關圖


邊緣密度函數

概率密度函數的求法如下:設 X=(X1,,Xn) 有概率密度函數 f(x1,,xn) ,�56em, -0.606em); top: -2.564em; left: 0em;">Xn)有概率密度函數 f(x1,,xn) ,爲求分量 Xi 的概率密度函數,只需要把 f(x1,,xn) 中的 x

相關文章
相關標籤/搜索