JavaShuo
欄目
標籤
【Paper Reading】AdderNet: DoWe Really Need Multiplications in Deep Learning?
時間 2020-07-25
標籤
Paper Reading
addernet
dowe
really
multiplications
deep
learning
简体版
原文
原文鏈接
2020 CVPR 北大 華爲 paper:https://arxiv.org/abs/1912.13200 code:https://github.com/huawei-noah/AdderNetgit 摘要 與廉價的加法運算相比,乘法運算具備更高的計算複雜度。在深度神經網絡中被普遍使用的卷積使用互相關來度量輸入特徵與卷積濾波器之間的類似性,這涉及到浮點值之間的大量乘法。本文提出的AdderNe
>>阅读原文<<
相關文章
1.
【Paper Reading】AdderNet: DoWe Really Need Multiplications in Deep Learning?
2.
加法神經網絡--AdderNet: DoWe Really Need Multiplications in Deep Learning?
3.
Addernet學習筆記 --- AdderNet: Do We Really Need Multiplications in Deep Learning?
4.
論文閱讀——AdderNet: Do We Really Need Multiplications in Deep Learning?
5.
論文筆記:AdderNet: Do We Really Need Multiplications in Deep Learning?
6.
AdderNet: Do we really need multiplications in deep learning——準研究生論文週報
7.
論文閱讀:Do We Really Need Multiplications in Deep Learning?
8.
論文筆記:Do We Really Need Multiplications in Deep Learning?
9.
【Paper Reading】【CVPR2020】加法網絡:AdderNet
10.
#Paper reading#DeepInf: Social Influence Prediction with Deep Learning
更多相關文章...
•
SQL IN 操作符
-
SQL 教程
•
Swift for-in 循環
-
Swift 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
Deep Learning
really
addernet
reading
learning
deep
paper
Meta-learning
Learning Perl
Deep Hash
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正確理解商業智能 BI 的價值所在
2.
解決梯度消失梯度爆炸強力推薦的一個算法-----LSTM(長短時記憶神經網絡)
3.
解決梯度消失梯度爆炸強力推薦的一個算法-----GRU(門控循環神經⽹絡)
4.
HDU4565
5.
算概率投硬幣
6.
密碼算法特性
7.
DICOMRT-DiTools:clouddicom源碼解析(1)
8.
HDU-6128
9.
計算機網絡知識點詳解(持續更新...)
10.
hods2896(AC自動機)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【Paper Reading】AdderNet: DoWe Really Need Multiplications in Deep Learning?
2.
加法神經網絡--AdderNet: DoWe Really Need Multiplications in Deep Learning?
3.
Addernet學習筆記 --- AdderNet: Do We Really Need Multiplications in Deep Learning?
4.
論文閱讀——AdderNet: Do We Really Need Multiplications in Deep Learning?
5.
論文筆記:AdderNet: Do We Really Need Multiplications in Deep Learning?
6.
AdderNet: Do we really need multiplications in deep learning——準研究生論文週報
7.
論文閱讀:Do We Really Need Multiplications in Deep Learning?
8.
論文筆記:Do We Really Need Multiplications in Deep Learning?
9.
【Paper Reading】【CVPR2020】加法網絡:AdderNet
10.
#Paper reading#DeepInf: Social Influence Prediction with Deep Learning
>>更多相關文章<<