spark自帶的kmeans例子分析

分析一下自帶的kmeans代碼,這個要稍微複雜一些python

import numpy as np
from pyspark import SparkContext

#這個函數的目的就是把讀入的數據都轉化爲float類型的數據
def parseVector(line):
    return np.array([float(x) for x in line.split(' ')])

#此函數的目的就是求取該點應該分到哪一個點集中去,返回的是序號
def closestPoint(p, centers):
    bestIndex = 0
    closest = float("+inf")
    for i in range(len(centers)):
        tempDist = np.sum((p - centers[i]) ** 2)
        if tempDist < closest:
            closest = tempDist
            bestIndex = i
    return bestIndex


if __name__ == "__main__":

    if len(sys.argv) != 4:
        print("Usage: kmeans <file> <k> <convergeDist>", file=sys.stderr)
        exit(-1)

    print("""WARN: This is a naive implementation of KMeans Clustering and is given
       as an example! Please refer to examples/src/main/python/mllib/kmeans.py for an example on
       how to use MLlib's KMeans implementation.""", file=sys.stderr)

    sc = SparkContext(appName="PythonKMeans")
    lines = sc.textFile(sys.argv[1])
    #此處調用了rdd的map函數把全部的數據都轉換爲float類型
    data = lines.map(parseVector).cache()
    #這裏的K就是設置的中心點數
    K = int(sys.argv[2])
    #設置的閾值,若是兩次之間的距離小於該閾值的話則中止迭代
    convergeDist = float(sys.argv[3])
    #從點集中用採樣的方式來抽取K個值
    kPoints = data.takeSample(False, K, 1)
    #中心點調整後的距離差
    tempDist = 1.0
    
    #若是距離差大於閾值則執行
    while tempDist > convergeDist:
        #對全部數據執行map過程,最終生成的是(index, (point, 1))的rdd
        closest = data.map(
            lambda p: (closestPoint(p, kPoints), (p, 1)))
        #執行reduce過程,該過程的目的是從新求取中心點,生成的也是rdd
        pointStats = closest.reduceByKey(
            lambda p1_c1, p2_c2: (p1_c1[0] + p2_c2[0], p1_c1[1] + p2_c2[1]))
        #生成新的中心點
        newPoints = pointStats.map(
            lambda st: (st[0], st[1][0] / st[1][1])).collect()
        #計算一下新舊中心點的距離差
        tempDist = sum(np.sum((kPoints[iK] - p) ** 2) for (iK, p) in newPoints)
        
        #設置新的中心點
        for (iK, p) in newPoints:
            kPoints[iK] = p

    print("Final centers: " + str(kPoints))

    sc.stop()

這裏就是整個過程了,提及來結合了numpy來使用還比較簡單app

相關文章
相關標籤/搜索