基於spark的kmeans算法

from __future__ import print_function

import sys

import numpy as np
from pyspark.sql import SparkSession


def parseVector(line):
    return np.array([float(x) for x in line.split(' ')])


def closestPoint(p, centers):
    bestIndex = 0
    closest = float("+inf")
    for i in range(len(centers)):
        tempDist = np.sum((p - centers[i]) ** 2)
        if tempDist < closest:
            closest = tempDist
            bestIndex = i
    return bestIndex


if __name__ == "__main__":

    if len(sys.argv) != 4:
        print("Usage: kmeans <file> <k> <convergeDist>", file=sys.stderr)
        sys.exit(-1)

    spark = SparkSession\
        .builder\
        .appName("PythonKMeans")\
        .getOrCreate()

    lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
    data = lines.map(parseVector).cache()
//聚類超參數K K
= int(sys.argv[2])
//收斂閾值 convergeDist
= float(sys.argv[3]) //初始化K箇中心點 kPoints = data.takeSample(False, K, 1) tempDist = 1.0 while tempDist > convergeDist:
// map Key: 聚類中心點 Value: (當前點, 數量1) closest
= data.map( lambda p: (closestPoint(p, kPoints), (p, 1)))
// reduce Key:聚類中心點, 計算每一個聚類中心點下的分佈 pointStats
= closest.reduceByKey( lambda p1_c1, p2_c2: (p1_c1[0] + p2_c2[0], p1_c1[1] + p2_c2[1]))
//map 計算新的中心點 newPoints
= pointStats.map( lambda st: (st[0], st[1][0] / st[1][1])).collect() tempDist = sum(np.sum((kPoints[iK] - p) ** 2) for (iK, p) in newPoints) for (iK, p) in newPoints: kPoints[iK] = p print("Final centers: " + str(kPoints)) spark.stop()
相關文章
相關標籤/搜索