https://arxiv.org/pdf/1706.08249.pdfweb
Few-Example Object Detection with Model Communication,Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, Deyu Mengapp
亮點dom
相關工做函數
這裏介紹幾個比較容易混淆的概念,以及與他們相關的方法性能
方法學習
Basic detector: Faster RCNN & RFCN優化
Object proposal method: selective search & edge boxesthis
Annotations: when we randomly annotate approximately four images for each class, an image may contain several objects, and we annotate all the object bounding boxes.spa
參數更新:
更新vj:對上述損失函數進行求導,能夠獲得vj的解
3d
對同一張圖像i同一個模型j,若是有多個樣本使得vj=1,則只選擇使Lc最小的那個樣本置爲1,其餘置爲0。gamma促使模型之間共享信息,由於vj爲1時,閾值變大,圖像更容易被選擇到。
更新wj:與其它文章方法相同
更新yuj:爲更新yuj咱們須要從一組bounding box找到知足如下條件的解,
很難直接找到最優化的解。文中採用的方案是:將全部模型預測出的結果輸入nms,並經過閾值只保留分數高的結果,餘下的組成yuj。
去除難例:we employ a modified NMS (intersection/max(area1,area2)) to filter out the nested boxes, which usually occurs when there are multiple overlapping objects. If there are too many boxes (≥ 4) for one specific class or too many classes (≥ 4) in the image, this image will be removed. Images in which no reliable pseudo objects are found are filtered out.
實驗
Compared with the-state-of-the-art (4.2 images per class is annotated)
[20] V. Kantorov, M. Oquab, M. Cho, and I. Laptev, 「Contextlocnet: Context-aware deep network models for weakly supervised localization,」 in European Conference on Computer Vision, 2016.
[21] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van Gool, 「Weakly supervised cascaded convolutional networks,」 2017
[22] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, 「Soft proposal networks for weakly supervised object localization,」 in International Conference on Computer Vision, 2017.
Ablation study
不足
雖然localization有必定準確率,可是難例圖片漏檢比較多(也就是說few example classification效果很差)。