JavaShuo
欄目
標籤
Localization and Object Detection
時間 2020-12-24
標籤
物體識別
CNN
物體定位
欄目
系統網絡
简体版
原文
原文鏈接
Localization 思路1:看作迴歸問題 首先考慮單個物體的檢測,對單個物體的分類來說,已經很清楚了,在網絡的最後一層加上softmax層或者multi-svm即可。對於檢測問題,我們需要獲得矩形邊框的位置,一個簡單的思路是將這個問題看作迴歸問題(x, y, w, h),所以很簡單將分類問題的最終一層換爲regression即可。 其基本思路是: (1)訓練一個分類網絡(Alex net,
>>阅读原文<<
相關文章
1.
Online Object Detection and Localization on Stereo Visual SLAM System
2.
(Review cs231n) Spatial Localization and Detection(classification and localization)
3.
目標檢測分類和定位:Rethinking Classification and Localization for Object Detection
4.
《Double-Head RCNN: Rethinking Classification and Localization for Object Detection》論文詳解
5.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
6.
Acquisition of Localization Confidence for Accurate Object Detection
7.
DenseBox: Unifying Landmark Localization with End to End Object Detection
8.
DL-semantic segmentation/Classification+Localization/Object Detection/Instance Segmentation
9.
【CS231n筆記】08 Spatial Localization and Detection
10.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
更多相關文章...
•
XSL-FO instream-foreign-object 對象
-
XSL-FO 教程
•
W3C RDF and OWL 活動
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
localization
detection
object...object
object
track+detection
action.....and
between...and
react+and
object%20object
4.object
系統網絡
MyBatis教程
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Online Object Detection and Localization on Stereo Visual SLAM System
2.
(Review cs231n) Spatial Localization and Detection(classification and localization)
3.
目標檢測分類和定位:Rethinking Classification and Localization for Object Detection
4.
《Double-Head RCNN: Rethinking Classification and Localization for Object Detection》論文詳解
5.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
6.
Acquisition of Localization Confidence for Accurate Object Detection
7.
DenseBox: Unifying Landmark Localization with End to End Object Detection
8.
DL-semantic segmentation/Classification+Localization/Object Detection/Instance Segmentation
9.
【CS231n筆記】08 Spatial Localization and Detection
10.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
>>更多相關文章<<