本文分析一下CountDownLatch是如何運用AQS的node
CountDownLatch顧名思義它是一個Latch(門閂),它是用一個計數器實現的,初始狀態計數器的數值等於線程數,每當有線程完成任務後,計數器就會減一。當state爲0時,鎖就會被釋放,凡是以前因搶佔鎖而等待的線程這時候就會被喚醒繼續搶佔鎖。app
public static void main(String[] args) throws InterruptedException{ int threadSize = 3; CountDownLatch doneSignal = new CountDownLatch(threadSize); for (int i = 1; i <= threadSize; i++) { final int threadNum = i; new Thread(() -> { System.out.println("thread" + threadNum + ":start"); try { Thread.sleep(1000 * threadNum); } catch (InterruptedException e) { System.out.println("thread" + threadNum + ":exception"); } doneSignal.countDown(); System.out.println("thread" + threadNum + ":complete"); }).start(); } System.out.println("main thread:await"); doneSignal.await(); System.out.println("main thread:go on"); }
例子中主線程啓動了三條子線程,睡眠一段時間,此時主線程在等待全部子線程結束後纔會繼續執行下去;
看一下輸出結果:函數
main thread:await thread1:start thread2:start thread3:start thread1:complete thread2:complete thread3:complete main thread:go on Process finished with exit code 0
既然CountDownLatch也是AQS的一種使用方式,咱們看一下它的內部類Syc是怎麼實現AQS的:oop
private static final class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 4982264981922014374L; //構造函數,初始化同步狀態state的值,即線程個數 Sync(int count) { setState(count); } int getCount() { return getState(); } //這裏重寫了方法,在共享模式下,告訴調用者是否能夠搶佔state鎖了,正數表明能夠,負數表明否認;當state爲0時返回正數 protected int tryAcquireShared(int acquires) { return (getState() == 0) ? 1 : -1; } //共享模式下釋放鎖 protected boolean tryReleaseShared(int releases) { // Decrement count; signal when transition to zero for (;;) { int c = getState(); //state爲0時說明沒有什麼可釋放 if (c == 0) return false; int nextc = c-1; if (compareAndSetState(c, nextc)) //CAS對state操做成功後返回state值是否爲0,爲0則釋放成功 return nextc == 0; } } }
看完了重寫的AQS同步器後,咱們瞭解了CountDownLatch對state鎖的描述。接下來先看主線程調用的await方法,在await方法裏調用了AQS的acquireSharedInterruptibly:ui
//在共享模式下嘗試搶佔鎖 public final void acquireSharedInterruptibly(int arg) throws InterruptedException { //線程中斷拋出異常 if (Thread.interrupted()) throw new InterruptedException(); //嘗試搶佔前先查詢一下是否能夠搶佔,若是返回值大於0程序往下執行,小於0則等待 if (tryAcquireShared(arg) < 0) doAcquireSharedInterruptibly(arg); } private void doAcquireSharedInterruptibly(int arg) throws InterruptedException { //在Reentrant解析中咱們看過,往隊列中新增node(共享模式) final Node node = addWaiter(Node.SHARED); boolean failed = true; try { for (;;) { final Node p = node.predecessor(); if (p == head) { //若是當前node的前繼時head,立刻嘗試搶佔鎖 int r = tryAcquireShared(arg); if (r >= 0) { //若是state==0即容許往下執行,從新設置head並往下傳播信號 setHeadAndPropagate(node, r); p.next = null; // help GC failed = false; //獲得往下執行的容許 return; } } //如下都跟Reentrant同樣 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) throw new InterruptedException(); } } finally { if (failed) cancelAcquire(node); } } private void setHeadAndPropagate(Node node, int propagate) { Node h = head; // Record old head for check below //將當前node設置爲head,清空node的thread、prev setHead(node); /* * Try to signal next queued node if: * Propagation was indicated by caller, * or was recorded (as h.waitStatus either before * or after setHead) by a previous operation * (note: this uses sign-check of waitStatus because * PROPAGATE status may transition to SIGNAL.) * and * The next node is waiting in shared mode, * or we don't know, because it appears null * * The conservatism in both of these checks may cause * unnecessary wake-ups, but only when there are multiple * racing acquires/releases, so most need signals now or soon * anyway. */ //若是propagate大於0,或者原來head的等待狀態小於0或者如今head的等待狀態小於0 if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) { Node s = node.next; //準備喚醒下一個節點 if (s == null || s.isShared()) doReleaseShared(); } } private void doReleaseShared() { /* * Ensure that a release propagates, even if there are other * in-progress acquires/releases. This proceeds in the usual * way of trying to unparkSuccessor of head if it needs * signal. But if it does not, status is set to PROPAGATE to * ensure that upon release, propagation continues. * Additionally, we must loop in case a new node is added * while we are doing this. Also, unlike other uses of * unparkSuccessor, we need to know if CAS to reset status * fails, if so rechecking. */ for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { //若是head的狀態爲SIGNAL,更改狀態爲0 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases //喚醒後繼節點 unparkSuccessor(h); } //若是head狀態爲0,更改狀態爲PROPAGATE else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } //若是head沒有改變,結束當前loop,若是遇到head被別的線程改變,繼續loop if (h == head) // loop if head changed break; } }
釋放鎖的信號一直向後傳播,直到全部node被喚醒並繼續執行,那第一個信號時什麼時候發起的呢?咱們來看一下CountDownLatch的countDown方法,該方法調用了sync的releaseShared方法:this
public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { //若是同步狀態state爲0時,調用doReleaseShared,在這裏就發出了第一個喚醒全部等待node的信號,而後信號自動日後傳播 doReleaseShared(); return true; } return false; }
CountDownLatch在調用await的時候判斷state釋放爲0,若是大於0則阻塞當前線程,將當前線程的node添加到隊列中等待;在調用countDown時當遇到state減到0時,發出釋放共享鎖的信號,從頭節點的後記節點開始日後傳遞信號,將隊列等待的線程逐個喚醒並繼續往下執行;
在這裏state跟Reentrant的state獨佔鎖含義不一樣,state的含義是由AQS的子類去描述的。線程